

OPERATION MANUAL

V3 SERIES HIGH PERFORMANCE

FREQUENCY INVERTER

Function parameter table

O-Parameter that can be modified in any state	> -Unmodifiable parameters in the running state
- Actual test parameters cannot be modified	-Factory parameters which are limited to the manufacturer's modification, the user is prohibited from modifying

Group P0 - Basic operating parameters

Function Code	Name	Content	Predetermined Area	Factory Default	Modific ation
P0. 00	Power specification of frequency inverter	Display current power	$0.10 \sim 99.99 \mathrm{kw}$	Device settings	\checkmark
P0. 01	Software version of the master controller	Display current software version number	$1.00 \sim 99.99$	1.00	-
P0. 02	Run command channel selection	0 : The panel runs the command channel 1: The terminal runs the command channel 2: The communication runs command channels	0~2	0	\bigcirc
P0. 03	Frequency setting selection	0: Panel potentiometer 1: Number given 1, adjust by operating A/V keys on the panel 2: Number given 2, adjust by terminals UP/DOWN 3: AVI simulation given ($0 \sim$ 10V) 4: Combination given 5: ACI given (0~20 mA) 6: Communication given 7: Pulse given Note: When selecting the combination given, select the mode of combination given mode in P1.15.	0~7	0	\bigcirc

P0. 04	Maximum output frequency	The maximum output frequency is the highest frequency allowed by the frequency inverter and the reference for the acceleration/ deceleration setting.	$\begin{gathered} \operatorname{MAX}\{50.0, \\ [\mathrm{P} 0.05]\} \sim 999.9 \mathrm{~Hz} \end{gathered}$	50.0 Hz	>
P0. 05	Upper frequency	The operating frequency cannot exceed this frequency	$\begin{gathered} \operatorname{MAX}\{0.1, \\ [\mathrm{P} 0.06]\} \sim[\mathrm{P} 0.04] \end{gathered}$	50.0 Hz	>
P0. 06	Low limit frequency	The operating frequency cannot be lower than this frequency	0.0~Upper limit frequency	0.0 Hz	\times
P0. 07	The processing at the lower limit frequency	0 : Running at zero speed 1: Running at lower frequency 2: Stop	0~2	0	>
P0. 08	Operation frequency digital setting	The set value is a given initial value of the frequency number	0~upper limit frequency	10.0 Hz	\bigcirc
P0. 09	Digital frequency control	LED ones place: Storage at power off 0: Store 1: Do not store LED tens place: Keep state at downtime 0: Keep 1: Do not keep LED hundreds place: UP/DOWN negative frequency regulation $0:$ Invalid 1: Valid LED thousands place: PID and PLC frequency overlay options 0: Invalid 1: P0.03+PID 2: P0.03+PLC	0000~2111	0000	\bigcirc

P0. 10	Acceleration time	Time required for the frequency inverter to accelerate from zero frequency to the maximum output frequency	$\begin{aligned} & 0.1 \sim 255.0 \mathrm{~S} \\ & 0.4 \sim 4.0 \mathrm{KW} \end{aligned}$	Devic	
P0. 11	Deceleration time	Time required for the frequency inverter to decelerate from maximum output frequency to zero frequency	$\begin{gathered} 5.5 \sim 22 \mathrm{KW} \\ 15.0 \mathrm{~S} \end{gathered}$		
P0. 12	Running direction setting	$\begin{aligned} & \text { 0: Forward } \\ & \text { 1: Reverse } \\ & \text { 2: Ban reversing } \end{aligned}$	0~2	0	\bigcirc
P0. 13	V/F curve setting	0: Linea curve 1: Square curve 2: Multipoint VF curve	0~2	0	\times
P0. 14	Torque lift	Vector control: Please set this parameter to 0.0 VF control: This parameter is manual torque lift; this value is set relatively to the motor rating percent voltage.	0.0~30.0\%	Device setting	\bigcirc
P0. 15	Cut-off frequency of torque lift	This setting is lifting cutoff frequency point of manual torque lifting	$0.0 \sim 50.0 \mathrm{~Hz}$	15.0 Hz	\times
P0. 16	Carrier frequency setting	For the occasion of silent operation, the carrier frequency can be increased to meet the requirements appropriately, but increasing the carrier frequency will increase the heat of frequency inverter.	$\begin{aligned} & 2.0 \sim 16 \mathrm{KHz} \\ & 0.4 \sim 3.0 \mathrm{KW} \\ & 4.0 \mathrm{KHz} \\ & 4.0 \sim 7.5 \mathrm{KW} \\ & 3.0 \mathrm{KHz} \end{aligned}$	Device setting	\times

P0. 17	V/F frequency value F1		0.1~frequency Value F2	12.5 Hz	\times
P0. 18	V/F voltage value V1		$0.0 \sim$ Voltage value V2	25.0\%	\times
P0. 19	$\begin{gathered} \text { V/F frequency } \\ \text { value F2 } \end{gathered}$		Frequency value F1 ~ Frequency value F3	25 Hz	\times
P0. 20	V/F Voltage value V2		$\begin{array}{r} \text { Voltage value } \mathrm{V} 1 \\ \sim \text { Voltage value } \mathrm{V} 3 \end{array}$	50\%	\times
P0. 21	$\begin{gathered} \text { V/F frequency } \\ \text { value F3 } \end{gathered}$		Frequency value F2 ~ Motor rated power [p4.03]	37.5 Hz	\times
P0. 22	V/F Voltage value V3		Voltage value V2~100.0\% multiply Uoute(Motor rated voltage[p4.00])	75\%	\times
P0. 23	User password	Set any non-zero number and wait 3 minutes or power off before it takes effect.	0~9999	0	\times

P1 group - auxiliary operating parameters					
Function code	Name	Setting range	Minimum Unit	Factory default	$\begin{aligned} & \text { Modifi } \\ & \text { cation } \end{aligned}$
P1.00	Start mode	LED single digits: Starting type 0: Start from the starting frequency 1: First dc braking and then start from the starting frequency LED tens digits: power failure or abnormal restart mode 0: Invalid 1: Start from the starting frequency LED hundreds digits: Reserve LED thousands digits: Reserve	0000~0011	00	>
P1.01	Start frequency		$0.0 \sim 50.0 \mathrm{~Hz}$	1.0 Hz	\bigcirc
P1. 02	Start dc braking voltage		$\begin{gathered} \hline 0.0 \sim 50.0 \% \\ \times \text { Motor rated } \\ \text { voltage } \\ \hline \end{gathered}$	0.0\%	\bigcirc
P1. 03	Start dc braking time		0.0~30.0s	0.0s	\bigcirc
P1.04	Stop mode	0 : Slowing down to stop 1: Stopping freely	0~1	0	>
P1. 05	Starting frequency of stop DC braking		0.0~upper limit frequency	0.0Hz	\bigcirc
P1. 06	Stop DC braking voltage		$\begin{gathered} \hline 0.0 \sim 50.0 \% \\ \times \text { Motor rated } \\ \text { voltage } \\ \hline \end{gathered}$	0.0\%	\bigcirc
P1. 07	Stop DC braking time		$0.0 \sim 30.0 \mathrm{~s}$	0.0s	\times
P1.08	Waiting time of stop DC braking		0.00~99.99s	0.00s	>
P1. 09	Frequency setting of forward jog	Set the frequency of forward or	$0.0 \sim 50.0 \mathrm{~Hz}$	10.0 Hz	-
P1. 10	Frequency setting of reverse jog	e jog			

P1.11	Jog acceleration time	Set the jog acceleration and	$\begin{gathered} 0.1 \sim 999.9 \mathrm{~S} \\ 0.4 \sim 4.0 \mathrm{KW} \end{gathered}$		
P1. 12	Jog deceleration time	deceleration time	$\begin{gathered} 5.5 \sim 7.5 \mathrm{KW} \\ 15.0 \mathrm{~S} \end{gathered}$	setting	
P1.13	Jumping frequency	The frequency inverter can avoid the mechanical resonance point of	$\begin{aligned} & 0.0 \sim \text { upper } \\ & \text { limit } \\ & \text { frequency } \end{aligned}$	0.0 Hz	\bigcirc
P1.14	Jumping range	and range.	$0.0 \sim 10.0 \mathrm{~Hz}$	0.0Hz	\bigcirc
P1. 15	Combination of frequency setting method	0: Potentiometer + digital frequency 1 1: Potentiometer + digital frequency 2 2: Potentiometer +AVI 3: Digital frequency $1+\mathrm{AVI}$ 4: Digital frequency $2+A V I$ 5: Digital frequency $1+$ SPD 6: Digital frequency $2+$ SPD 7: Potentiometer + SPD	0~7	0	\times
P1. 16	Programmable operation control (Simple PLC operation)	LED single digits: PLC controller0: Invalid 1: Valid LED tens digits: Operation mode options 0: Single cycle 1: Continuous cycle 2: Keep the final value after a single cycle LED hundreds digits: Start mode 0: Restart from the first stage 1: Start from the stage of stop (fault) moment 2: Start from the stage and frequency of stop (fault) moment LED thousands digits: Power off and then storage options 0: Do not store 1: Store	0000~1221	0000	\times
P1. 17	Multi-speed frequency 1	Set the frequency in velocity period 1	Negative upper limit frequency~ Upper limit	5.0 Hz	\bigcirc

P1. 18	Multi-speed frequency 2	Set the frequency in velocity period 2	Negative upper limit frequency~ Upper limit frequency	10.0 Hz	\bigcirc
P1. 19	Multi-speed frequency 3	Set the frequency in velocity period 3	Negative upper limit frequency~ Upper limit frequency	15.0 Hz	\bigcirc
P1. 20	Multi-speed frequency 4	Set the frequency in velocity period 4	Negative upper limit frequency~ Upper limit frequency	20.0 Hz	\bigcirc
P1. 21	Multi-speed frequency 5	Set the frequency in velocity period 5	Negative upper limit frequency~ Upper limit frequency	25.0 Hz	\bigcirc
P1. 22	Multi-speed frequency 6	Set the frequency in velocity period 6	Negative upper limit frequency~ Upper limit frequency	37.5 Hz	\bigcirc
P1.23	Multi-speed frequency 6	Set the frequency in velocity period 7	Negative upper limit frequency~ Upper limit frequency	50.0 Hz	\bigcirc
P1. 24	Running time of stage 1	Set the running time of stage 1 (unit is chosen by $[\mathrm{P} 1.35]$ and defaults to seconds)	0.0~999.9s	10.0s	\bigcirc
P1. 25	Running time of stage 2	Set the running time of stage 2 (unit is chosen by [P1.35] and defaults to seconds)	0.0~999.9s	10.0s	\bigcirc
P1. 26	Running time of stage 3	Set the running time of stage 3 (unit is chosen by [P1.35] and defaults to seconds)	0.0~999.9s	10.0s	\bigcirc
P1.27	Running time of stage 4	Set the running time of stage 4 (unit is chosen by [P1.35] and in second by default)	0.0~999.9s	10.0s	\bigcirc

P1.28	Running time of stage 5	Set the running time of stage 5 (unit is chosen by [P1.35] and in second by default)	0.0~999.9s	10.0s	\bigcirc
P1. 29	Running time of stage 6	Set the running time of stage 6 (unit is chosen by [P1.35] and in second by default)	0.0~999.9s	10.0s	\bigcirc
P1. 30	Running time of stage 7	Set the running time of stage 7 (unit is chosen by [P1.35] and in second by default)	0.0~999.9s	10.0s	\bigcirc
P1.31	$\begin{gathered} \text { Stage } \\ \text { acceleration } \\ \text { and } \\ \text { deceleration } \\ \text { time option 1 } \end{gathered}$	LED single digits: Acceleration and deceleration time in stage 1 $0 \sim 1$ LED tens digits: Acceleration and deceleration time in stage 2 $0 \sim 1$ LED hundreds digits: Acceleration and deceleration time in stage 3 $0 \sim 1$ LED thousands digits: Acceleration and deceleration time in stage 4 $0 \sim 1$	0000~1111	0000	\bigcirc
P1. 32	Stage acceleration and deceleration time option 2	LED ones digits: Acceleration and deceleration time in stage 5 $0 \sim 1$ LED tens digits: Acceleration and deceleration time in stage 6 $0 \sim 1$ LED hundreds digits: Acceleration and deceleration time in stage 7 $0 \sim 1$ LED thousands digits: Reserve	000~111	000	\bigcirc
P1.33	Acceleration time 2	Set acceleration and deceleration time	$\begin{gathered} 0.1 \sim 999.9 \mathrm{~s} \\ 0.4 \sim 4.0 \mathrm{KW} \end{gathered}$		
P1.34	Deceleration time2	2	$\begin{gathered} 10.0 \mathrm{~s} \\ 5.5 \sim 7.5 \mathrm{KW} \\ 15.0 \mathrm{~s} \end{gathered}$	10.0 s	\bigcirc

P1.35	Time unit selection	LED single digits: Time unit of process PLC LED tens digits: Time unit of simple PLC LED hundreds digits: Regular acceleration and deceleration time LED thousands digits: Reserve0: Unit is in 1 second 1: Unit is in 1 minute 1: Unit is in 0.1 second	000~211	000	\times

Group P2	analog and	digital input and output parameter			
Function code	Name	Setting range	Minimum Unit	Factory default	Modific ation
P2.00	AVI input lower limit voltage	Set AVI upper and lower limits of	$\begin{aligned} & 0.00 \sim \\ & {[P 2.01]} \end{aligned}$	0.00V	\bigcirc
P2.01	AVI input upper limit voltage		$\begin{gathered} {[\mathrm{P} 2.01] \sim} \\ 10.00 \mathrm{~V} \end{gathered}$	10.00V	\bigcirc
P2.02	AVI lower limit corresponding setting	Set the AVI upper and lower limits corresponding setting which is corresponding to the percentage of the upper limit frequency [P0.05]	$\begin{gathered} -100.0 \% \sim \\ 100.0 \% \end{gathered}$	0.0\%	\bigcirc
P2.03	AVI upper limit corresponding setting			100.0\%	\bigcirc
P2.04	AVI input lower limit voltage	Set ACI upper and lower limits of current	$\begin{gathered} 0.00 \sim \\ {[\mathrm{P} 2.05]} \end{gathered}$	0.00 mA	\bigcirc
P2.05	AVI input upper limit voltage		$\begin{gathered} {[\mathrm{P} 2.04] \sim} \\ 20.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 20.00 \mathrm{~m} \\ \mathrm{~A} \end{gathered}$	\bigcirc
P2.06	ACI lower limit corresponding setting	Set the ACI upper and lower limits corresponding setting which is corresponding to the percentage of the upper limit frequency [P0.05]	-100.0\%~100.0\%	0.0\%	\bigcirc
P2.07	ACI upper limit corresponding setting			100.0\%	\bigcirc
P2.08	Time constant of analog input signal filtering	This parameter is used to filter input signals of AVI, ACI and panel potentiometers to eliminate the influence of interference.	0.1~5.0s	0.1s	\bigcirc
P2.09	Anti - shake error limit of analog input	When the analog input signal fluctuates frequently near the given value, P2.09 can be set to suppress the frequency fluctuation caused by this fluctuation.	0.00~0.10V	0.00V	\bigcirc

P2. 22	Closing delay	The delay of the relay R state changes			
P2.23	Disconnecti on delay	to the output change			
P2. 24	Frequency reaches the FAR detection range	The output frequency is within the positive and negative detection width of the set frequency, and the terminal outputs a valid signal (low level).	$0.0 \mathrm{~Hz} \sim 15.0 \mathrm{~Hz}$	5.0 Hz	\bigcirc
P2. 25	FDT level setting value		$0.0 \mathrm{~Hz} \sim$ frequency upper limit	10.0 Hz	\bigcirc
P2. 26	FDT hysteresis value		0.0~30.0Hz	1.0 Hz	\bigcirc
P2. 27	UP/DOWN terminal end rate	The function code is the frequency end rate when the UP/DOWN terminal setting frequency is set, that is, the amount of frequency change when UP/DOWN terminal is shorted to the COM terminal for one second.	0.1Hz~99.9Hz/s	$1.0 \mathrm{~Hz} / \mathrm{s}$	\bigcirc
P2. 28	$\begin{gathered} \text { Input } \\ \text { terminal } \\ \text { pulse } \\ \text { trigger } \\ \text { mode } \\ \text { setting } \\ \text { (X1~ X5) } \end{gathered}$	0: Indicates the level trigger mode 1: Indicates the pulse trigger mode	0~1FH	0	\bigcirc
P2. 29	Input terminal effective logic setting (X1~X5)	0: Indicates positive logic, that is, the connection between the Mi terminal and the common terminal is valid, and the disconnection is invalid 1: Indicates the inverse logic, that is, the connection between the Mi terminal and the common terminal is invalid, and the disconnection is valid.	$0 \sim 1 \mathrm{FH}$	0	\bigcirc

P2. 30	$\left\lvert\, \begin{aligned} & \text { X1 Filter } \\ & \text { coefficient } \end{aligned}\right.$		0~9999	5	\bigcirc
P2.31	X2 Filter coefficient	terminals. If the digital input terminal is susceptible to interference and cause	0~9999	5	\bigcirc
P2. 32	$\left\lvert\, \begin{aligned} & \text { X3 Filter } \\ & \text { coefficient } \end{aligned}\right.$	parameter to increase the anti-	0~9999	5	\bigcirc
P2.33	X4 Filter coefficient	too large, the sensitivity of the input terminal will decrease.	0~9999	5	\bigcirc
P2.34	X5 Filter coefficient		0~9999	5	\bigcirc

Group \mathbf{P}	PID param				
Function code	Name	Setting range	Minimum unit	Factory default	nodific ation
P3.00	PID function setting	LED single digits: PID adjustment characteristics 0: Invalid 1: Positive action when the feedback signal is greater than the given amount of PID, the output frequency of frequency inverter is required to decrease (i.e., the feedback signal is reduced). 2: Negative action when the feedback signal is greater than the given amount of PID, the output frequency of the frequency inverter is required to increase (i.e., the feedbacksignal is reduced). LED tens digits: PID given amount channel 0: Keyboard potentiometer The PID given amount is given by the potentiometer on the operation panel. 1: Digital given The PID given amount is given by the number and set by the function code P3.01. 2: Pressure given (MPa, Kg) The pressure is given by setting P3.01 and P3.18. LED hundreds digits: PID feedback amount input channel 0: AVI 1: ACI LED thousands digits: PID sleep options 0: Invalid 1: Normal sleep This mode needs to set specific parameters such as P3.10~P3.13. 2: Disturbing sleep The parameter setting is the same as when the sleep mode is selected as 0 . If the PID feedback value is within the range of the P3.14 set value, enter the disturbance sleep after the sleep delay time is maintained. When the feedback value is less than the wake threshold (the PID polarity is positive), it will wake up immediately.	0000~2122	1010	\times

P3. 01	The number setting given amount	Use the operation keypad to set the given amount of PID control. This function is valid only when the PID given channel selecting digital is given (P3.00 tens place is 1 or 2). If the P3.00 tens digits is 2 , it is used as the pressure given, and the unit of this parameter is consistent with of P3.18.	0.0~100.0\%	0.0\%	\bigcirc
P3.02	Gain of feedback channel	This function can be used to adjust the gain of the feedback channel signal when the feedback channel does not match the set channel level.	0.01~10.00	1.00	\bigcirc
P3.03	Proportional gain P	The speed of the PID adjustment is set by the two parameters of	0.01~5.00	2.00	\bigcirc
P3.04	Integration time Ti	time. It is required to increase the proportional gain and	0.1~50.0s	1.0s	\bigcirc
P3.05	Derivative time Td	reduce the integration time to get high adjustment speed. It is required to reduce the proportional gain and increase the integration time to get a low adjustment speed. In general, the derivative time is not set.	0.1~10.0s	0.0s	\bigcirc
P3.06	Sampling period T	The larger the sampling period, the slower the response, but the better the suppression of the interference signal, and it is generally not necessary to set it.	0.1~10.0s	0.0s	\bigcirc
P3.07	Deviation limit	The deviation limit is the ratio of the absolute value of the deviation between the system feedback quantity and the given quantity to the given quantity, when the feedback quantity is within the deviation limit range, the PID adjustment does not work.	0.0~20.0\%	0.0\%	\bigcirc

$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { P3.08 } & \begin{array}{c}\text { Closed } \\ \text { loop preset } \\ \text { frequency }\end{array} & \begin{array}{c}\text { Frequency and running time of the } \\ \text { frequency inverter before the }\end{array} & \begin{array}{c}0.0 \sim \text { upper } \\ \text { limit } \\ \text { frequency }\end{array} & 0.0 \mathrm{~Hz}\end{array}\right)$

P3.16	High pressure detection threshold	When the feedback pressure is greater than or equal to this set value, the tube explosion fault "EPA0" is reported after the P3.15 burst tube delay. When the feedback pressure is less than this set value, the burst alarm "EPA0" is automatically reset; the given threshold is the percentage of pressure.	0.0~200.0\%	150.0\%	\bigcirc
P3.17	Low pressure detection threshold	When the feedback pressure is less than or equal to this set value, the tube explosion fault "EPA0" is reported after the P3.15 burst tube delay. When the feedback pressure is greater than this set value, the burst alarm "EPA0" is automatically reset; the given threshold is the percentage of pressure.	0.0~200.0\%	50.0\%	-
P3.18	Sensor range	Set the maximum range of the sensor	$\begin{gathered} 0.00 \sim 99.99 \\ (\mathrm{MPa} / \mathrm{Kg}) \end{gathered}$	$\left\lvert\, \begin{aligned} & 10.00 \mathrm{M} \\ & \mathrm{~Pa} \end{aligned}\right.$	-

Group P4 - Advanced Function Parameters					
Function	name	Setting range	Minimum unit	Factory default	Modification
P4.00	Motor rated voltage	Motor parameter setting	$\begin{aligned} & 0 \sim 500 \mathrm{~V}: 380 \mathrm{~V} \\ & 0 \sim 250 \mathrm{~V}: 220 \mathrm{~V} \end{aligned}$	Service setting	\times
P4.01	Motor rated current		0.1~999A	Service setting	\times
P4.02	Motor rated speed		$0 \sim 60000 \mathrm{Krpm}$	Service setting	\times
P4.03	Motor rated frequency		$1.0 \sim 999.9 \mathrm{~Hz}$	50.0 Hz	\times
P4.04	Motor stator resistance	Set the motor stator resistance	0.001~20.000 Ω	Service setting	\bigcirc
P4.05	Motor no-load current	Set the motor no-load current	$0.1 \sim$ [P4.01]	Service setting	\times
P4.06	AVR function	0 : Invalid 1: Valid throughout 2: Invalid only during deceleration	0~2	0	\times
P4.07	Cooling fan control	0 : Automatic control mode 1: Keep running during the poweron process	$0 \sim 1$	0	\bigcirc
P4.08	Number of automatic resets	When the number of fault resets is set to 0 , there is no automatic reset function but only manual reset. And if the number is to be10 that means the number of times is not limited (countless times)	$0 \sim 1$	0	\times
P4.09	Interval of fault auto reset	Set the interval of fault auto reset	0.5~25.0s	3.0s	\times
P4.10	Energy consumption brake starting voltage	If the internal DC side voltage of the frequency inverter is greater than the energy consumption brake starting voltage, the built-in brake unit operates. If the brake resistor is connected at this time, the voltage	$\begin{gathered} 330 \sim 380 / 660 \\ \sim 760 \mathrm{~V} \end{gathered}$	$\begin{gathered} 350 / \\ 780 \mathrm{~V} \end{gathered}$	\bigcirc

P4.11	Energy consumption braking action ratio	energy boosted inside the frequency inverter will be released through braking resistor, causing the DC voltage to fall back.	$10 \sim 100 \%$	100%

Group P5 - Protection function parameters					
Function code	Name	Setting range	Minimum unit	Factory default	Modifi cation
P5. 00	Protection settings	LED single digits: motor overload protection option 0 : Invalid 1: Valid LED tens digits: PID feedback disconnection protection 0 : Invalid 1: Protect action and stop freely LED Hundreds digits: Reserve LED Thousands digits: Oscillation suppression options 0 : Invalid 1: Valid	0000~1211	0001	\times
P5. 01	Motor overload protection coefficient	The motor overload protection coefficient is the percentage of the motor rated current value to the rated output current of the frequency inverter.	30\%~110\%	100\%	\times
P5. 02	Undervoltage protection level	This function code specifies the lower limit voltage allowed by the DC bus when the frequency inverter is working normally.		$\begin{aligned} & 180 / \\ & 360 \mathrm{~V} \end{aligned}$	\times
P5.03	$\begin{array}{\|c} \text { Deceleration } \\ \text { voltage } \\ \text { limiting } \\ \text { coefficient } \end{array}$	This parameter is used to adjust the ability of the frequency inverter to suppress overvoltage during deceleration.	$\begin{aligned} & \text { 0: shut down, } \\ & 1 \sim 255 \end{aligned}$	1	\times
P5. 04	Overvoltage limit level	The overvoltage limit level defines the operating voltage for overvoltage stall protection	$\begin{gathered} 350 \sim \\ 400 / 660 \sim \\ 850 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 375 / \\ & 790 \mathrm{~V} \end{aligned}$	\times

P5.05	Acceleration current limit coefficient	This parameter is used to adjust the ability of the frequency inverter to suppress overcurrent during acceleration.	$\begin{aligned} & \text { 0: shut down, } \\ & \text { 1~99 } \end{aligned}$	10	\times
P5.06	Constant speed current limiting coefficient	This parameter is used to adjust the ability of the frequency inverter to suppress overcurrent during constant speed.	$\begin{gathered} 0 \text { : shut down, } \\ \quad 1 \sim 10 \end{gathered}$	0	\times
P5.07	Current limit level	The current limit level defines the current threshold for the automatic current limit action, and its set value is relative to the percentage of rated current of the frequency inverter.	50\% 250\%	180\%	\times
P5.08	Feedback disconnection detection value	The value is the percentage of given amount of the PID. When the feedback value of the PID continues to be less than the feedback disconnection detection value, the frequency inverter will make the corresponding protection action according to the setting of P5.00, which is invalid when P5.08 $=0.0 \%$.	0.0~100.0\%	0.0\%	\times
P5.09	Feedback disconnection detection time	After the feedback disconnection occurs, the delay time before the action is protected.	0.1~999.9S	10.0s	\times
P5. 10	Frequency inverter overload pre-alarm level	The current threshold of the frequency inverter overload prealarm action, the set value is relative to the rated current of the frequency inverter.	0~150\%	120\%	\bigcirc

P5.11	Frequency inverter overload prealarm delay	The delay time between the output current of the frequency inverter is continuously lager than the overload pre-alarm level (P5.10) and output overload pre-alarm signals.	$0.0 \sim 15.0 \mathrm{~s}$	5.0s	\times
P5.12	Jog priority enable	0 : Invalid 1: The jog priority is highest when the frequency inverter is running	0~1	0	\times
P5.13	Oscillation suppression coefficient	When the motor is oscillating, you should set the thousands digits of	0~200	30	\bigcirc
P5.14	Amplitude suppression coefficient	P5.00 effective, turn on the oscillation suppression function and adjust by setting the oscillation	$0 \sim 12$	5	\bigcirc
P5.15	Oscillation suppression lower limit frequency	suppression coefficient. Under normal circumstances, the oscillation amplitude is large, and increase the oscillation suppression coefficient	$0.0 \sim$ [P5.16]	5.0 Hz	\bigcirc
P5.16	Oscillation suppression upper limit frequency	you encounter a special occasion, you need to use P5.13~P5.16 together.	[P5.15] ~ [P0.05]	45.0 Hz	\bigcirc
P5.17	Wave-by-wave current limit selection	LED single digits: options in acceleration 0: Invalid 1: Valid LED tens digits: options in deceleration 0: Invalid 1: Valid LED Hundreds digits: Options in constant speed running 0: Invalid 1: Valid LED Thousands digits: Reserve	$000 \sim 111$	011	\times

Group P6 - Communication parameters

P6.00	Native address	Set the native address, and 0 is the broadcast address.	0~247	1	\times
P6.01	MODBUS communication configuration	LED single digits: Baud rate options 0:9600BPS 1:19200BPS 2:38400BPS LED Tens digits: Data Format 0: No parity 1: Even parity 2: Odd parity LED Hundreds digits: Communication Response 0: Normal response 1: Only respond to the slave address 2: No response 3: Slave does not respond to the free stop command of the host in broadcast mode LED Thousands digits: Reserve	0000~0322	0001	\times
P6.02	Communication timeout checkout time	If the native machine does not receive the correct data signal within the interval time defined by this function code, then the native machine thinks that the communication has failed, and the frequency inverter will decide whether to protect or maintain the current operation according to the setting of the communication failure action mode; when the value is set to 0.0, RS485 communication timeout is not detected.	$0.1 \sim 100.0 \mathrm{~s}$	10.0s	\times

P6.03	Native response delay	This function code defines the intermediate interval time between the end of the data frame reception of the frequency inverter and the transmission of the response data frame to the host computer. If the response time is less than the system processing time, the system processing time shall prevail.	$0 \sim 200 \mathrm{~ms}$	5 ms	\times
P6.04	Proportional linkage coefficient	This function code is used to set the weight coefficient of the frequency command of the frequency inverter received through the RS485 interface as the slave. The actual running frequency of the native machine is equal to the value of this function code multiplied by the frequency setting command value received through the RS485 interface. In the linkage control, this function code can set the ratio of the running frequency of multiple frequency inverter.	0.01~10.00	1.00	-

Group P7 - Supplementary function parameters

Function code	Name	Setting range	Minimum unit	Factory default	Modifi cation
P7.00	Counting and timing mode	LED single digits: Counting arrival processing 0: Single cycle count, stop outputting 1: Single cycle count, continue to output 2: Loop count, stop outputting 3: loop count, continue to output LED Tens digits: Reserve LED Hundreds digits: Timing arrival processing 0: One-week timing, stop outputting 1: Single-cycle timing, continue to output 2: Cycle timing, stop outputting 3: Cycle timing, continue to output LED Thousands digits: Reserve	000~303	103	\times
P7. 01	Counter reset value setting	Set the counter reset value	[P7.02] ~9999	1	\bigcirc
P7. 02	Counter detection value setting	Set the counter detection value	0~ [P7.01]	1	\bigcirc
P7. 03	Timed time setting	Set timed time	0~9999s	0s	\bigcirc
P7. 04	External pulse X5 input lower limit frequency		$\begin{aligned} & 0.00 \sim \\ & {[P 7.14]} \end{aligned}$	$\left.\begin{gathered} 0.00 \mathrm{KH} \\ \mathrm{z} \end{gathered} \right\rvert\,$	\bigcirc
P7. 05	External pulse X5 input upper limit frequency		$\begin{aligned} & {[P 7.13] \sim} \\ & 99.99 \mathrm{KHz} \end{aligned}$	$\left\|\begin{array}{c} 20.00 \mathrm{~K} \\ \mathrm{~Hz} \end{array}\right\|$	\bigcirc

P7.06	External pulse X5 lower limit correspondi ng setting	Set the external pulse X5 upper and lower limit corresponding settings,	$\begin{gathered} -100.0 \% \sim \\ 100.0 \% \end{gathered}$	0.0\%	\bigcirc
P7. 07	External pulse X5 upper limit corresponding setting	to the maximum output frequency.	$\begin{gathered} -100.0 \% \sim \\ 100.0 \% \end{gathered}$	100.0\%	\bigcirc

Group P8 - Management and Display Parameters

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { code } \end{array}$	Name	Setting range	Minimum unit	Factory default	Modific ation
P8.00	Operation monitoring parameter item selection	For example: $\mathrm{P} 8.00=2$, that is, select the output voltage ($\mathrm{d}-02$), then the default display item of the main monitoring interface is the current output voltage value.	0~26	0	\bigcirc
P8. 01	Shut-down monitoring parameter selection	For example: $\mathrm{P} 8.01=3$, that is, select the bus voltage ($\mathrm{d}-03$), then the default display item of the main monitoring interface is the current bus voltage value.	0~26	1	\bigcirc
P8. 02	Motor speed display factor	It is used to correct the display error of the speed scale and has no effect on the actual speed.	0.01~99.99	1.00	\bigcirc
P8.03	Parameter initialization	0: No operationThe frequency inverter is in thenormal parameter read-write status.Whether the function code setting value can be changed depends on the setting status of the user password and the current working status of the frequency inverter. 1: Restore factory settings All user parameters are restored to the factory settings according to device. 2: Clear the fault record Clear the contents of the fault record (d-19~d-24). This function code is automatically cleared to 0 after the operation is completed.	0~2	0	\times
P8. 04	MF key setting	0: MF 1: Forward and reverse switching 2: Clear frequency setting of Δ / ∇ button 3: Reverse run (At this time, the RUN button defaults to forward)	0~3	0	\times

Group P9 - manufacturer parameters

Function code	Name	Setting range	Minimu \mathbf{m} unit	Factory default	Modific ation
P9.00	Manufacturer password	$1 \sim 9999$	1	$* * * *$	\diamond

Group d - Monitoring parameter group
Function code

d-15	Output relay status (R)	$0 \sim 1 \mathrm{H}$	1H	0H	-
d-16	Module temperature $\left({ }^{\circ} \mathrm{C}\right)$	$0.0 \sim 132.3^{\circ} \mathrm{C}$	$\begin{gathered} 0.0 \sim \\ 132.3^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 0.0 \sim \\ 132.3^{\circ} \mathrm{C} \end{gathered}$	-
d-17	Software upgrade date (year)	2010~2026	1	2017	-
d-18	Software upgrade date (month, day)	0~1231	1	0914	-
d-19	Second fault code	0~19	1	0	-
d-20	Last fault code	0~19	1	0	-
d-21	Output frequency (Hz) in the most recent fault	$0.0 \sim 999.9 \mathrm{~Hz}$	0.1 Hz	0.0Hz	-
d-22	Output current (A) in the most recent fault	0.0~999.9A	0.1A	0.OV	-
d-23	Bus voltage (V) in the most recent fault	999.9 V	1V	OV	-
d-24	Module temperature in the most recent fault $\left({ }^{\circ} \mathrm{C}\right)$	$0.0 \sim 132.3^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.0{ }^{\circ} \mathrm{C}$	-
d-25	Accumulated running time of the frequency inverter (h)	0~9999h	1h	Oh	-

Group E-Fault code			
Fault code	Name	Possible reason of failure	Troubleshooting
EOC1	Overcurrent during acceleration	Acceleration time is too short	Increase the acceleration time
		The power of frequency inverter is too small	Use a new frequency inverter with a bigger power level
		Improper setting of V/F curve or torque boost	Adjust the V/F curve or torque boost
EOC2	Overcurrent during deceleration	Deceleration time is too short	Increase the deceleration time
		The power of frequency inverter is too small	Use a new frequency inverter with a bigger power level
EOC3	Overcurrent during constant speed operation	Low grid voltage	Check input power
		Load become mutational or abnormal	Check load or reduce load change
		The power of frequency inverter is too small	Use a new frequency inverter with a bigger power level
EHU 1	Overvoltage during acceleration	Abnormal input voltage	Check input power
		Restart the rotating motor	Set to start after DC braking
EHU 2	Overvoltage during deceleration	Deceleration time is too short	Increase deceleration time
		Abnormal input voltage	Check input power
EHU 3	Overvoltage during constant speed operation	Abnormal input voltage	Check input power
EHU 4	Overvoltage during shut-down	Abnormal input voltage	Check the power voltage

ELU0	Undervoltage in operation	The input voltage is abnormal or the relay is not connected	Check the supply voltage or ask the manufacturer for service
ESC1	Power module failure	Frequency inverter output short circuit or grounding	Check motor wiring
		Frequency inverter transient overcurrent	Refer to the overcurrent countermeasures
		The control board is abnormal or the interference is serious.	Ask the manufacturer for service
		Power device damage	Ask the manufacturer for service
E-OH	Heat sink overheating	Ambient temperature is too high	Reduce ambient temperature
		Fan damage	Replace the fan
		Air duct blockage	Dredge the air duct
EOL1	Frequency inverter overload	Improper setting of V/F curve or torque boost	Adjust the V/F curve or torque boost
		Grid voltage is too low	Check the grid voltage
		Acceleration time is too short	Increase acceleration time
		Motor overload	Use one new bigger power frequency inverter
EOL2	Motor overload	Improper setting of V/F curve or torque boost	Adjust the V/F curve or torque boost
		Grid voltage is too low	Check grid voltage
		Motor stalled or the mutation of load is too large	Check the load
		Motor overload protection factor setting is incorrect	Set the motor overload protection coefficient Correctly

E-EF	External device failure	External device fault input terminal is closed	Disconnect the external device fault input terminal and clear the fault (Pay attention to checking the cause)
EPID	PID Feedback disconnection	PID feedback circuit is loose	Check feedback connection
		The feedback amount is less than the disconnection detection value	Adjust the detection input threshold
E485	RS485 communicatio n failure	Does not match the host computer baud rate	Adjust baud rate
		RS485 channel interference	Check whether the communication connection is shielded, whether the wiring is reasonable, and considering connecting the filter capacitor if necessary.
		Communication timeout	Retry
ECCF	Current detection fault	Current sampling circuit failure Auxiliary power failure	Ask the manufacturer for service
EEEP	EEPROM read-write error	EEPROM failure	Ask the manufacturer for service
EPAO	Burst failure	The feedback pressure is less than the low-pressure detection threshold or greater than or equal to the highpressure detection threshold	Detect feedback connection or adjust detection high- and low-pressure threshold
EPOF	Dual CPU communicatio n failure	CPU communication failure	Ask the manufacturer for service

1. RTU mode and format

When the controller is communicating on the Modbus bus in RTU mode, each 8-bit byte in the message is divided into two 4-digit hexadecimal characters. The main advantage of this mode is the density of the transmitted characters at the same baud rate is larger than ASCII mode, and each message must be transmitted continuously.
(1) Format of each byte in RTU mode

Coding system: 8-bit binary, hex 0-9, A-F.
Data bits: 1 start bit, 8 data bits (low bit first), stop bit occupies 1 bit, parity check bit can be selected. (Refer to RTU data frame bit sequence diagram)
Error check area: Cyclic Redundancy Check (CRC)
(2) RTU data frame bit sequence diagram

With parity check

Start	1	2	3	4	5	6	7	8	Par	Stop

Without parity check

Start	1	2	3	4	5	6	7	8	Stop

Read-write function code description:

Function code	Function Description
03	Read the register
06	Write the register

2. Parameter description of the communication protocol:

Function Description	Address definition	Data meaning description	R/W
Communication control command	2000H	0001H: Shut down 0012H: Forward running 0013H: Forward jog running 0022H: Reverse running 0023H: Reverse jog running	W
Communication setting frequency address	2001H	The communication setting frequency range is 10000 to 10000 . Note: The communication setting frequency is the percentage relative to the maximum frequency, which ranges from -100.00% to	W
Communication control command	2002H	0001H: External fault input	W
		0002H: Fault reset	
Read run/stop parameter description	2102H	Setting frequency (two decimal digits)	R
	2103H	Output frequency (two decimal digits)	R

	2104H	Output current (one decimal digits)	R
	2105H	Bus voltage (one decimal digits)	R
	2106H	Output voltage (one decimal digits)	R
	210DH	Inverter temperature (one decimal digits)	R
	210EH	PID feedback value (two decimal digits)	R
	210FH	PID setting value (two decimal digits)	R
Read the fault code description	2101H	Bit0: Run Bit1: Shut down Bit2: Jog Bit3: Forward Bit4: Reverse Bit5~Bit7: Reserve Bit8: Communication given Bit9: Analog signal input Bit10: Communication running command channel Bit11: Parameter lock Bit12: Running Bit13: Command of jog Bit14~Bit15: Reserve	R
Read the fault code description	2101H	00: No abnormality 01: Module failure 02: Overvoltage 03: Temperature failure 04: Frequency inverter overload 05: Motor overload 06: External fault 07~09: Reserve 10: Overcurrent in acceleration 11: Overcurrent in deceleration 12: Overcurrent in constant speed 13: Reserve 14: Undervoltage	R

4. 03 read function mode:

Inquiry information frame format:

Address	01 H
Function	03 H
Starting data address	21 H
Data(2Byte)	02 H
	00 H
CRC CHK High	02 H
	6 FH

Analysis of This paragraph of data:

01 H	is the address of frequency inverter
03 H	is the read function code
2102 H	is the initial address 0002 H
is the number of read address, that is, 2102 H and 2103 H	
F76FH	is the 16-bit CRC checking code

Response information frame format:

Address	01 H
Function	03 H
DataNum*2	04 H
Data1[2Byte]	17 H
	Data2[2Byte]
CRC CHK Low	00 H
CRC CHK High	00 H

Analysis of this paragraph of data:

01 H	is the address of frequency inverter
03 H	is the read function code
04 H	is the product of the read item *2
1770 H	is the data of read 2102 H (set frequency)
0000 H	is the data of read 2103 H (output frequency)
5 CFEH	is a 16-bit CRC checking code

5. 06 read function mode

Inquiry information frame format

Address	01 H
Function	06 H
Starting data address	20 H
	00 H
	Data(2Byte)
CRC CHK Low	00 H
CRC CHK High	01 H

Analysis of this paragraph of data:

01 H	is the address of frequency inverter
06 H	is the write function code
2000 H	is the address of control command
0001 H	is the stop command
43 CAH	is a 16-bit CRC checking code

Response information frame format:

Address	01 H
Function	06 H
Starting data address	20 H
	00 H
Number of Data (Byte)	00 H
	01 H
CRC CHK Low	43 H
CRC CHK High	CAH

Analysis of this paragraph of data: If the settings are correct, return the same input data.

Wiring diagram

Voltage	$\begin{aligned} & \text { Power } \\ & \text { (KW) } \end{aligned}$	$\begin{gathered} \text { Output } \\ \text { current(A) } \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{MM}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (MM) } \\ \hline \end{gathered}$	$\underset{(\mathrm{MM})}{\mathrm{D}}$	D1 (MM)	Mounting aperture (MM)
Single Phase AC 220 V	0.4	2.5	85	143	116	126	4.5
	0.75	5					
	1.5	7					
	2.2	10	100	151	120	130	
Three Phase AC 380 V	0.75	3					
	1.5	4					
	2.2	5					
	3.7	8.5	125	220	166	176	
	5.5	13					
	7.5	17					

FMZ2019-12 Version:V1.0

