V6 Series Frequency Inverter

User's Manual (v2020.7)

Prior to use, please read this user's manual carefully.

CAUTION:Please keep this user's manual for future reference.

FREQUENCY INVERTER

USER'S MANUAL

English Version V2020.7

TABLE OF CONTENT

1．PRELUDE 1
1．1．Checking before use． 1
2．SAFETY REQUIREMENT AND CAUTIONS 2
2．1．Warning signs and meanings ．． 2
2．2．Safety operation 2
3．TYPE AND SPECIFICATIONS 5
3．1．Nameplate5
3．2．Type description of frequency inverter 错误！未定义书签。
3．3．Type of frequency inverter 5
3．4．Technical specifications． 6
3．5．Daly inpection and main tenance 11
3．5．1．Daily inspection 14
3．5．2．Periodic inspection 15
3．5．3．Maintenance 17
4．INSTALLATION AND WIRING 19
4．1．Installation of frequency inverter 19
4．2．Installation environment 19
4．2．1．Installation method of frequency inverter 21
4．2．2．Disassembly／installation of the cover 22
4．3．Wiring of the frequency inverter 23
4．3．1．Wiring of the control circuit 29
5．BASIC OPERATION AND TRIAL RUNNING 32
5．1．Appearance of keyboard panel． 32
5．2．Basic operation of panel 33
5．2．1．Running model selection 33
5．2．2．Powering－on default mode 33
5．2．3．Parameter setting Mode 34
5．2．4．Status monitoring mode 34
5．2．5．Parameter verifying mode． 35
5．2．6．JOG 35
5．3．Power on and confirmation of display status 35
5．3．1．Local control mode 36
4．3．2 Remote control mode 36
6．DETAILED PARAMETER DESCRIPTION 42
6．1．Basic parameter group 42
6．2 Motor and its protection parameter group． 50
6．3 Motor control parameter group 53
6.4 Process PID parameter group. 57
6.5 Fault protection parameter group. 77
6.6 Fault protection parameter group. 87
6.7 Keyboard panel parameter group 97
6.8 Additional function parameter group. 102
6.9 Communication function parameter group 111
6.10 Process PID parameter group 113
6.11 Monitoring function parameter group 118
7. FAULT DIAGNOSIS AND MEASURES. 121
7.1. Fault code, cause and measures. 121
7.2. Description of alarm and indication code 124
7.3. Restart of the frequency inverter after fault occurs 125
8. APPENDIX A: SERIAL COMMUNICATION 126
A1. RS-485 bus 126
A2. Modbus protocol. 127
A2.1 Description of Modbus-RTU message format. 127
A2.2 Detailed message description of different commands 128
A2.3 Cyclic redundancy check (CRC) 132
A2.4 Error code 132
A2.5 Communication parameter 133
9. APPENDIX B: CONCISE PARAMETER LIST. 138
10. APPENDIX C: BRAKE UNIT/RESISTANCE SELECTION 164

1. PRELUDE

Thank you for using this series frequency inverter, it is a universal vector control one that owns high quality, multiple functions and low noise.

This User's Manual offers complete introduction of installation and use of the frequency inverter, setting of function parameters, fault treatment and maintenance etc for the frequency inverter. Please read this manual carefully before using in order to guarantee correct installation and use of the frequency inverter .

This manual is an accessory along with the machine. Please keep it properly for the future use for repair and maintenance.

1.1. Checking before use

When opening the box, please carefully check and confirm:
If the product inside together with the quality certificate, user's manual and warranty card;
Please check the "Model" column on the side of the machine, and re-confirm if the product and your order are consistent;

If there's any damage, scratch or dirt (damages caused during transportation are not within the company's warranty)

If there's any damage , product missing or some other questions, please contact the dealer you purchased the product or the sales department immediately.

Note: Do not install the frequency converter if you find the product is damaged or component missing, otherwise it may cause death or large safety incident.

2. SAFETY REQUIREMENT AND CAUTIONS

2.1. Warning signs and meanings

This manual has used the following signs which means there is an important parts of security. While observing against the rules, there is a danger of injury even death or machine system damage.

Danger: Wrong operation may cause serious injury or death

Wrong operation may cause death or large safety incident

Caution: Wrong operation may cause slight injury or damage to equipment.
Please read the user's manual carefully before installation, only professionally trained persons can be allowed to operate the equipment. "Professional trained persons" means the workers must be familiar with installation, wiring, running and maintenance .The operator must follow all the safety instructions to operate the machine.

If any physical injury or death or damage to the devices for ignoring to the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

2.2. Safety operation

2.2.1 Machine checking

Do not install the frequency converter if you find the product is damaged or component missing, otherwise it may cause death or large safety incident.

2.2.2 Mechanical installation

Please install the frequency converter on metal or fire-retardant material in case of fire.
Please keep the frequency converter away from combustible materials.
Do not install the frequency converter in the environment of explosive gas.

$\wedge_{\text {caution }}$

Please hold the bottom of the frequency converter when installing and transport to prevent the machine from falling.

The installation platform must be strong enough to hold the frequency converter in case the machine falling and lead to damage

Please install the frequency converter in the safe place with less vibration, avoid direct sunlight, no water splashing.

When installing two or more frequency converters in one cabinet, please ensure all the machines get good heat dissipation.

Take measures to avoid screws, cables and other conductive matters fall into the frequency converter during maintenance and component replacement.

2.2.3 Electric installation

$\widehat{\Delta D a n g e r}$

Only professional electrical engineer was allowed to install the machine, otherwise there is a risk of electric shock. There must be a circuit breaker between the frequency converter and input power, otherwise it may cause fire.

Before wiring, make sure the frequency converter is power-off, and all the charging indicator is completely extinguished, otherwise there is a risk of electric shock.

The PE terminal must be properly grounded in case of the risk of electric shock.

Acaution

According to the power level of the frequency converter, please select the appropriate power cable for it, otherwise an accident may occur.

Don't connect the input power to the out terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the frequency converter, otherwise it will cause damage to the drive system.

When connecting the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$), pay attention to the rotation direction of the motor.
Please make sure the connection and wiring meets the EMC requirement and the safety standards of the local area, otherwise an accident may occur.

Do not connect the braking resistor between the DC bus (+) and (-) terminals, otherwise it may cause fire.
Except control terminal T1A - T1B - T1C and T2A - T2B - T2C, all other terminals are forbidden to connect to the AC 220 V signal. Otherwise it will cause damage to the frequency converter.

2.2.4 Precautions before power- on

$\triangle \wedge_{\text {Danger }}$

Do not carry out any voltage-endurance test as all the products have past the test before leaving the factory.
Do not touch the driver and circuits with wet hands before and after power-on. Otherwise there is a risk of electric shock.

All covers must be installed and closed before powering on, otherwise there is a risk of electric shock.
Do not open the protective cover after power-on in case the risk of electric shock.
Do not touch any input and output terminals of the frequency converters after power-on, otherwise there is a danger of electric shock.

Before powering on, please confirm if the input voltage is consistent with the frequency converter's rated voltage, whether the wiring of the power input terminal $(\mathrm{R}, \mathrm{S}, \mathrm{T})$ and output terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ are correct, checking if there is shot circuit for drive circuit.

The wiring of all accessories (like DC reactor, Braking resistor) must follow the instruction of this manual, otherwise it may cause an accident.

Do not change the parameters reserved by the manufacturer, otherwise it may cause damage to the equipment.

2.2.5 Running

! Danger

Do not touch the cooling fan and discharge resistance to test the temperature when the machine is running, otherwise it may cause burn.

Only professional technician was allowed to detect frequency converter's signals during operation, otherwise it may cause personal injury or equipment damage.

! Caution

During operation, metal or other debris should be prevented from falling into the equipment, otherwise the equipment may be damaged.

Do not use the contactor to start or stop the drive system of the frequency converter, otherwise it may cause equipment damage.

2.2.6 Maintenance and replacement of components

! Danger

Only qualified electricians are allowed to perform the maintenance and must do the job according to the maintenance instruction.

The input power of the frequency converter must be cut off before maintenance. After at 10 minutes of discharge, the maintenance work can be carried out.

When plugged and unplugged the devices, make sure the power is off.
Take measures to avoid screws, cables and other conductive materials to fall into the frequency converter during maintenance and component replacement

Do not touch the components on the PCB board directly, static electricity is easy to damage the frequency converter.

After finish the work of repair, all the screws must be tightened.
When replacing the fan, pay attention to the rotation direction of the fan.
After replacing the control board, some parameter must be setting before the machine start again,otherwise there is damage to the equipment.

2.2.7 Scrap disposition

$\widehat{\Delta c a u t i o n ~}$

There are heavy metals in the frequency converter. Treat it as industrial effluent.
When the life cycle ends, the product should enter the recycling system. Dispose of it separately at an appropriate collection point instead of placing it in the normal waste stream.

3. TYPE AND SPECIFICATIONS

3.1. Nameplate

Figure 2.1 Nameplate example

3.2. Type of frequency inverter

Table 2.1 Type of frequency inverter (Three-phase 400V class)

| Model | G type (overloaded) | | | | P type (light load) | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Motor
 power
 (kW) | Line
 current
 (A) | Rated
 output
 current (A) | Maximum
 transient
 current for
 60s (A) | Motor
 power
 (kW) | Line
 current
 (A) | Rated
 output
 curren
 t (A) | Maximum
 transient
 current for
 60s (A) |
| V6-0R75G/1R5P-T4 | 0.75 | 3.6 | 2.3 | 3.5 | 1.5 | 6.4 | 4.1 | 4.9 |
| V6-1R5G/2R2P-T4 | 1.5 | 6.4 | 4.1 | 6.2 | 2.2 | 8.7 | 5.5 | 6.6 |
| V6-2R2G/3RP-T4 | 2.2 | 8.7 | 5.5 | 8.3 | 3 | 10.9 | 6.9 | 8.3 |
| V6-4RG/5R5P-T4 | 4 | 14 | 9.4 | 14.1 | 5.5 | 20.7 | 12.6 | 15.1 |
| V6-5R5G/7R5P-T4 | 5.5 | 20.7 | 12.6 | 18.9 | 7.5 | 26.5 | 18.5 | 20.4 |
| V6-7R5G/11RP-T4 | 7.5 | 26.5 | 18.5 | 25.5 | 11 | 36.6 | 24.6 | 29.5 |
| V6-11RG/15RP-T4 | 11 | 36.6 | 24.6 | 37 | 15 | 40 | 32 | 38.4 |
| V6-15RG/18R5P-T4 | 15 | 40 | 32 | 48 | 18.5 | 47 | 38 | 45.6 |
| V6-18R5G/22RP-T4 | 18.5 | 47 | 38 | 57 | 22 | 56 | 45 | 54 |
| V6-22RG/30RP-T4 | 22 | 56 | 45 | 68 | 30 | 70 | 60 | 72 |
| V6-30RG/37RP-T4 | 30 | 70 | 60 | 90 | 37 | 80 | 75 | 90 |
| V6-37RG/45RP-T4 | 37 | 80 | 75 | 113 | 45 | 94 | 92 | 110.4 |
| V6-45RG/55RP-T4 | 45 | 94 | 92 | 138 | 55 | 128 | 115 | 138 |
| V6-55RG/75RP-T4 | 55 | 128 | 115 | 173 | 75 | 160 | 150 | 180 |
| V6-75RG/90RP-T4 | 75 | 160 | 150 | 225 | 90 | 190 | 180 | 216 |
| V6-90RG/110RP-T4 | 90 | 190 | 180 | 270 | 110 | 225 | 215 | 258 |
| V6-110RG/132RP-T4 | 110 | 225 | 215 | 323 | 132 | 265 | 260 | 312 |
| V6-132RG/160RP-T4 | 132 | 265 | 260 | 390 | 160 | 310 | 305 | 366 |

V6-160RG/185RP-T4	160	310	305	458	185	355	350	420
V6-185RG/200RP-T4	185	355	350	525	200	385	380	456
V6-200RG/220RP-T4	200	385	380	570	220	430	425	510
V6-220RG/250RP-T4	220	430	425	638	250	485	480	576
V6-250RG/280RP-T4	250	485	480	720	280	545	530	636
V6-280RG/315RP-T4	280	545	530	795	315	610	600	720
V6-315RG/3550RP-T4	315	610	600	900	355	665	650	780
V6-355RG-T4	355	665	650	975	355	665	650	780
V6-400RG-T4	400	785	725	1088	400	785	725	870
V6-500RG-T4	500	885	860	1290	500	885	860	1032
V6-560RG-T4	560	950	950	840	560	950	950	840
V6-630RG-T4	630	1100	1100	945	630	1100	1100	945
V6-710RG-T4	710	1230	1230	1300	710	1230	1230	1300
V6-800RG-T4	800	1400	1400	1380	800	1400	1400	1380

3.3. Technical specifications

Table 2.2: Technical Parameters of the frequency inverter

ITEM		SPECIFICATIONS
Main Input	Rated voltage and frequency	3-phase 400 V class: $380 \mathrm{~V}-480 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
	Allowable value of change	Voltage: 380V-15\% ~ 480V+10\%; Frequency: $\pm 15 \%$
Main output	Output voltage	Maximum output voltage equals to input voltage
	Output frequency	0.5 Hz to 400 Hz
	Overload capacity	150% of rated output current for 60 s, 200% of rated output current for 2s
Control performance	Modulation mode	3-phase PWM, 2-phase PWM
	Control mode	V/f control for constant torque, V/f control for quadratic load, vector control without PG (open loop control),Energy-saving
	Setting method of run command	Outer terminal, keyboard panel or serial communication
	Setting method of speed command	Analog setting, keyboard, serial communication, UP/DOWN speed setting from external terminal
	Speed setting resolution	Keyboard: 0.1 Hz
		Analog setting: $0.05 / 50 \mathrm{~Hz}$ (10bit)
	Speed control precision	V/f control: $\pm 2 \%$
		vector control without PG (open loop control): $\pm 0.2 \%$
	Speed control range	V/f control 1:40

		vector control without PG (open loop control): 1:200
	Acceleration and Deceleration Time	0-3200.0s
	switching frequency	$1.5 \mathrm{kHz} \sim 12 \mathrm{kHz}$, according to junction temperature automatically reduce the switching frequency
Analog input	Number	2 ways: Al1, Al2
	Type	DC voltage or DC current
	Maximum input range	Al1: 0 to $5 \mathrm{VDC}, 0$ to $10 \mathrm{VDC}, 0.4$ to 20 mA DC receivable AI2: 0 to 10 VDC or PTC probe input receivable
Analog output	Number	2 way: AO1, AO2
	Type	DC voltage or DC current
	Maximum input range	Voltage output: 0 to 10 V , Current output: $0 / 4$ to 20 mA
logic input	Number	$\begin{aligned} & \text { 0.75kW-11kW:LI, LI2, LI3, LI4, LI5, LI6 } \\ & 0.75 \mathrm{~kW}-11 \mathrm{~kW}: \mathrm{LI}, \mathrm{LI} 2, \mathrm{LI} 3, \mathrm{LI} 4, \mathrm{LI}, \mathrm{LI} 6, \mathrm{LI} 7, \mathrm{LI} 8 \end{aligned}$
	Type	Source or Sink
	Maximum input range	0-24VDC
logic output	Number	$0.75 \mathrm{~kW}-11 \mathrm{~kW}$: pulse signal output1, 2 (LO1-CLO1, LO2CLO2), relay output1, 2 (T1A-T1B-T1C, T2A-T2B-T2C) $15 \mathrm{~kW}-500 \mathrm{~kW}$:pulse signal output (LO-CLO) , relay output 1, 2 (T1A-T1B-T1C, T2A-T2B-T2C)
	pulse signal output	OC, output frequency, current output, act other function
	relay output	RA-RB-RC, including a NO contact and a NC contact Maximum switch capacity: T1A-TIC/T2A-T2C: 5A @ 250VAC, or 5A@ 30VDC T1B-T1C/T2B-T2C: 3A @ 250VAC or 3A @ 30VDC
Serial communication interface		RS485 interface supports Modbus protocol.
Display	4-digit LED digital display	For display of frequency setting, output frequency, fault code and parameter setting etc.
Environment	Standard	Development of the frequency inverter follows strict international standards and relevant recommended IEC and EN standards for control devices, especially IEC/EN61800-51 and IEC/EN61800-3.
	Altitude	Dreading unnecessary when altitude is 1000 m or below (Dreading necessary at altitude higher than 1000m)
	Ambient environment	$0.75 \mathrm{~kW}-11 \mathrm{~kW}$: Reliable operation at $-10 \sim 50^{\circ} \mathrm{C}$ without debating. When top protective cover is taken off, the environment temperature can be as high as $+50^{\circ} \mathrm{C}$. Above $+50{ }^{\circ} \mathrm{C}$, the current drops by 2.2% for each rise of $1^{\circ} \mathrm{C}$ in temperature. $15 \mathrm{~kW}-500 \mathrm{~kW}$: Reliable operation at $-10 \sim 40^{\circ} \mathrm{C}$ without dreading.

		Storage: $-25 \sim 70^{\circ} \mathrm{C}$
	Humidity	No condensed water or drip at $5 \sim 95 \%$, In accordance with IEC60068-2-3
	Impact strength	15 gn for continuous 11ms, In accordance with IEC/EN60068- $2-27$
	Maximum antipollution capacity	Class 2, in accordance with IEC/EN61800-5-1
Structure	Protection level	Top: IP41 (without removing the protective top cover). Other parts: IP20
	Cooling Method	Forced Air cooling
	Wall mounted	

External dimensions and other parameters

Description of components in the frequency inverter

(a) Components of the frequency inverter (three-phase11kW and below))

Figure 2.4 External and mounting dimensions(Single phase, three-phase 11 kW and below)
Table 2.3 External and mounting dimensions(Single phase, three-phase11kW and below)

Model	Outline Dimensions (mm)			Installation Dimensions (mm)		
	H	W	D	H1	W1	Aperture
V6-0R75G/1R5P-T4	145	107	144	135	95	Ф5
V6-1R5G/2R2P-T4						
V6-2R2G/3RP-T4						
V6-4RG/5R5P-T4	200	138	134	188	124	Ф5
V6-5R5G/7R5P-T4						
V6-7R5G/11RP-T4	232	153	164	220	139	Ф5
V6-11RG/15RP-T4						

Figure 2.5 External and mounting dimensions (three-phase 15 kW to 315 kW)

Model	Outline Dimensions (mm)			Installation Dimensions (mm)		
	H	W	D	H1	W1	Aperture
V6-15RG/18R5P-T4	335	200	195	321	140	Ф9
V6-18R5G/22RP-T4						
V6-22RG/30RP-T4						
V6-30RG/37RP-T4	410	260	214	396	180	Ф9
V6-37RG/45RP-T4						
V6-45RG/55RP-T4	560	305	300	543	200	Ф11
V6-55RG/75RP-T4						
V6-75RG/90RP-T4	600	310	310	583	240	Ф11
V6-90RG/110RP-T4						
V6-110RG/132RP-T4						
V6-132RG/160RP-T4	720	355	345	698	240	Ф13
V6-160RG/185RP-T4						
V6-185RG/200RP-T4	920	480	390	898	320	Ф13
V6-200RG/220RP-T4						
V6-220RG/250RP-T4						
V6-250RG/280RP-T4	1100	480	405	1078	320	Ф13
V6-280RG/315RP-T4						
V6-315RG/355RP-T4						

Figure 2.6 External and mounting dimensions (three-phase 350 kW to 800 kW)

Model	Outline Dimensions (mm)			Installation Dimensions (mm)		
	H	W	D	H1	W1	Aperture
V6-355RG-T4	1100	650	465	1060	350	Ф17
V6-400RG-T4						
V6-500RG-T4						
V6-560RG-T4	2200	1100	800	943	665	Ф16
V6-630RG-T4						
V6-710RG-T4	2200	1400	800	1100	665	Ф16
V6-800RG-T4						

\#1 \& \#2: These frequency inverters could install the base to the same width of the device to be the cabinet. Based height is 200 mm for \#1 and 300 mm for \#2. If you and your customer request this base, please do the note when you place the order.

3.4. Daly inpection and main tenance

Electronic equipment cannot be used permanently. Even in the normal working environment, characteristic change or abnormal action will occur if it exceeds service life. In order to prevent the fault problem and safety problem resulted from component aging due to environmental factors, such as temperature, oil mist, dust, vibration and moisture etc, it is necessary to carry out such preventive maintenance as daily inspection, periodic check and component replacement etc.

The frequency inverter consists of IGBT, IC and other semiconductor components, capacitor, resistor and other electronic components, plus fan, relay and many other components. If all of these components cannot work properly, it is impossible to bring the functions of the product into full play.

Note: Only qualified electric professional personnel can perform installation, wiring, dis-assembly and maintenance.
-Designated personnel should maintain according to specified method.

- Before starting inspection and maintenance of the frequency inverter, switch off power supply of all devices, and begin to maintain after waiting 10 minutes.
- Except designated personnel, no other person can perform maintenance, inspection or component replacement. Otherwise there is risk of electric shock.
- Perform all plug devices only when the power supply is completely switched off. Otherwise there is risk of electric shock.
- Take off watch, ring or other metal articles before performing check, maintenance, and component replacement etc. Try not to wear loose clothing, but to wear eye protection glasses.
- Only designated personnel familiar with installation, commissioning and repair can perform installation, wiring, repair, check and component replacement.
- Please fasten the terminal screw with specified torque. If the connection of the main circuit wires becomes loose, fire may occur due to the overheat at the connection of the wire.
-Do not apply wrong voltage to the main circuit power supply. Otherwise there is risk of electric shock.
- Do not make combustible in close contact with the frequency inverter or attach combustible to the frequency inverter. Otherwise there is risk of fire. Please install the frequency inverter on metal or other flame retardant objects.

WARNING

- When using PCB, be sure to follow processes specified by the electrostatic protection measures (ESD). Otherwise internal circuit may be damaged due to static electricity.
- Please follow the instruction of this manual to correctly replace the cooling fan. If the installation direction is wrong, the cooling function cannot be brought into play and it may result in damage of the frequency inverter. When installing the cooling fan to the frequency inverter, be sure to make the side with label upward.
- For the frequency inverter with 2 cooling fans, be sure to replace them together in order to extend the service life of the product to the maximum extent.
- Never disassemble or install the motor when the frequency inverter outputs voltage. Otherwise the frequency inverter may be damaged.
- When wiring the control circuit, do not use cables other than shielded wire. Otherwise it may result in abnormal action of the frequency inverter. Please use shielded and double-stranded wire and connect its shielded layer to the grounding terminal PE of the frequency inverter.
- Nonprofessional shall not perform wiring in case damaging the frequency inverter.
- Please do not attempt to change the circuit of the loop. Otherwise it may damage the frequency inverter. The required repair does not belong to the guarantee scope of our company.
-We bears no responsibility if your company or the end user makes reconstruction to the product.
- After the wiring of the frequency inverter with other machine is finished, make sure that all wiring is correctly performed. Otherwise it may damage the frequency inverter.
- Please make the wiring according to correct phase sequence. Inconsistency of the phase sequence may result in reverse rotation of the motor.
-Connect the output terminals U, V and W of the frequency inverter to the input terminals U, V and W of the motor respectively. At this time make sure that the phase sequences of the motor terminals and frequency inverter terminals are in consistency.
- In consideration of the service life of internal relay contact and the electrolytic capacitor, make sure that the maximum frequency for powering on and off does not exceed once every 30 minutes.
- Try best to perform running and stop of the motor according to the running/stop operation of the frequency inverter.
- Do not try to operate damaged machine in case of acceleration of the damage. If the frequency inverter has obvious damage or some component is lost, do not connect it or operate it.

3.4.1. Daily inspection

3.4.1.1. Routine inspection

Content of routine inspection:
-Whether screws of the control terminals are loose. Use screwdriver of proper size to fasten them.

- Whether there is poor contact at the main circuit terminals, and whether there is overheat trace at connection of cables or the copper bar and at the screws.
- Whether there is damage on the power cables and the control cables, especially if there is trace of crack and cut on the external insulation layers.
- Whether the joint of power cable and cold-compression terminals is loose, and whether (tape) at the joint is aging or falling.
- Thoroughly clean the dust at the PCBs and the wind duct. Make sure to take anti-static measures when perform cleaning.
- Before conducting insulation test to the frequency inverter, be sure to firstly disassemble all connection wires between the frequency inverter and the power supply and between the frequency inverter and the motor, reliably short connect all input and output terminals of main circuit with conducting wire, then conduct earth test.
- Use qualified 500 V megger (or corresponding voltage shift position of insulation test instrument) to perform insulation test. Do not use faulty instrument; It is strictly prohibited to perform earth insulation test by connecting only one single main circuit terminal, otherwise there is risk of damaging the frequency inverter.
- Never perform insulation test to control terminals. Otherwise it may damage the frequency inverter. After the test BE SURE TO disassemble all the conducting wires that short connect all main circuit terminals.
- Before conducting insulation test to the motor, be sure to disconnect all conducting wires between the motor and the frequency inverter, then individually perform test to the motor. Otherwise there is risk of damaging the frequency inverter.
-The insulation binder Daily inspection
- The routine inspection items of the frequency inverter are shown in table 2.6. To avoid deterioration of the frequency inverter 's function and damage to the product, please make the confirmation of the following items every day.

Table 2.4 Table of items of daily inspection

Inspection object	Main points of inspection			Judgment standard
	Content of inspection	Peri od	Inspection means	
Operation environment	Temperature and humidity	Any time	Point thermometer and hygrometer	The environment temperature is lower than $55^{\circ} \mathrm{C}$. Otherwise the frequency inverter should be derated. Humidity complies with requirement of the environment.
	Dust, vapor and dripping leak		Observation	No dust, trace of water leakage or dewdrop
	Gas		Observation and sniffing	No abnormal color or smell

Inspection object	Main points of inspection			Judgment standard
	Content of inspection	Peri od	Inspection means	
frequency inverter	vibration	Any time	Synthetic observation	Smooth operation without vibration
	Heat radiation and heat generation		Point thermometer and synthetic observation	Fan operates normally with normal wind speed and air volume, and without abnormal heat generation.
	Noise		Listening	No abnormal noise
Motor	Vibration	Any time	Synthetic observation and listening	No abnormal vibration and noise
	Heat generation		Point thermometer	No abnormal heat generation
	Noise		Listening	No abnormal noise

Inspection object	Main points of inspection	Judgment standard	Inspection object	Main points of inspection
	Content of inspection	Period	Inspection means	

3.4.2. Periodic inspection

The periodic inspection items of the frequency inverter are shown in table 2.7. Normally it is better to make a periodic inspection every 3 or 6 months. In practice, please determine actual inspection frequency in combination with application condition of the frequency inverter and working environment. Periodic inspection helps to prevent deterioration of performance and damage of the product.

Table 2.5 Table of items of periodic inspection

Inspection items	Content of inspection	Measures to fault
Main circuit		
Whole body	Make inspection with megameter (between the main circuit terminals and the grounding terminals).	Take proper measures (fastening etc)
	Whether there is component decolored due to overheat or aging.	Replace the damaged component.
	Whether there is damage or deformation to component	If there is damaged place impossible to be repaired or replaced, replace the whole frequency inverter.
	Whether there is dirt, rubbish or dust.	Confirm the door of the control cabinet contains the frequency inverter is firmly closed. If it is difficult to make cleaning, please replace the seriously dirty part.
		Clean with dry air. (Pressure: $39.2 \times 104 \sim 58.8 \times 104 \mathrm{~Pa}$)
Conductor and wire	Whether wires and connection are decolored, damaged, or aged due to overheat.	Replace damaged wire.
	Whether there is breakage, crack or decoloring on the wire sheath.	
Terminal block	Whether there is fray, damage or loosening in the connecting terminals.	If screw or terminal is damaged when fastened, replace it.
Electromagnetic contactor and relay	Whether there is abnormal noise when it works.	Confirm the coil voltage respectively under two situations: the voltage exceeds or does not exceed the reference value.
	Whether there is aging or crack on the wire sheath of the coil due to overheat.	Replace damaged electromagnetic contactor, relay or PCB.
Braking resistor (optional)	Whether the insulator is decolored due to overheat.	Slight decoloring is not abnormal.
		When decoloring is detected, confirm whether there is bad wiring.
Electrolytic capacitor	Whether there is liquid leak, decoloring or crack.	If there is damaged place impossible to be repaired or replaced, replace the whole frequency inverter.
	Whether the safety valve is exposed and whether the capacitor swells or cracks, or there is liquid leak.	
Diode and IGBT	Whether there is rubbish or dust.	Clean with dry air. (Pressure: $39.2 \times 104 \sim 58.8 \times 104 \mathrm{~Pa}$)

Motor		
Action inspection	Whether vibration and operation noise is acutely abnormal.	Stop the motor and contact specialized service personnel.
Control circuit		
Whole body	Whether there is fray, damage or improper connection at the connecting terminals.	If screw or terminal is damaged when fastened, replace it.
	Whether the screw is loose.	If it is impossible to repair or replace the terminals of the PCB, replace the frequency inverter
PCB	Whether there is abnormal smell, decoloring, severe rust, whether the connectors are correctly installed and whether there is dust and oil mist.	Re-install connectors.
		If the PCB cannot be cleaned with anti-static cloth or dust cleaner, replace it.
		Do not apply solvent to the PCB.
		Clean rubbish and dust with dry air. (Pressure: $39.2 \times 104 \sim 58.8 \times 104 \mathrm{~Pa}$)
		If there is damaged place impossible to be repaired or replaced, replace the whole frequency inverter.
Cooling system		
Cooling fan	Whether there is abnormal noise and vibration in the motor of the cooling fan.	Sweep or replace the cooling fan.
	Whether there is damaged or missing blade.	
Cooling fin	Whether there is rubbish and dust or dirt.	Clean rubbish and dust with dry air. (Pressure: $39.2 \times 10^{4} \sim 58.8 \times 10^{4} \mathrm{~Pa}$)
Ventilation vent	Whether air inlet and outlet are blocked or there is foreign body attached.	Clear obstacle and dust.
Indicator		
Keyboard panel	Whether LED indication is correct.	If there is bad situation in LED or the operation keys, contact the distributors or sales offices.
	Whether the operation part is polluted.	Clean it.

3.4.3. Maintenance

3.4.3.1. Standard for replacement of component

To ensure reliable running of the frequency inverter, besides periodic maintenance, replace the following internal components periodically: components withstanding long-term mechanical wear, all cooling fans and main circuit filter capacitor used for energy storage and exchange. For normal continuous application, make the replacement according to the following table. Please also consider the concrete situation such as application environment, load situation and frequency inverter status etc.

Table 2.6 Service life reference of main components of the frequency inverter

Name of component	Service time
Fan	$30,000 \sim 40,000$ hours
Electrolytic capacitor	$40,000 \sim 50,000$ hours
Relays RA-RB-RC	Approx. 100,000 times

3.4.3.2. Storage and safekeeping

After purchase of the frequency inverter if it is not put into use immediately and has to be kept for a short time or stored for a long time, follow the following instructions:

- Store the frequency inverter at places with temperature range specified by the standard, with no moisture, dust and metal powder but with good ventilation.
- If the frequency inverter has not been used more than 1 year, perform charging experiment to it so as to restore the characteristics of main circuit filter capacitor inside the frequency inverter. During charging, slowly raise the input voltage with a voltage regulator until to the rated input voltage. The switching on time should be more than 1-2 hours. The above experiment should be done at least one time a year.
- Do not perform voltage withstanding test at will. Otherwise it will reduce the service time of the frequency inverter. For the insulation test, it is suggested to make measurement with 500 V megameter before the test. The insulation resistance should not be lower than $4 \mathrm{M} \Omega$.

Table 2.7 Storage environment

Environment characteristics	Requirement	Note	
Ambient temperature	$-25^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$	The temperature is $<30^{\circ} \mathrm{C}$ for long time storage in in case of deterioration of the capacitor.	Avoid dewing and freezing environment resulted from drastic change of temperature.
Relative humidity	5~95\% without condensation or dripping water		
Storage environment	There is no direct sunshine,		
	Adopt plastic film for sealing and desiccant etc. dust, corrosive gas, flammable gas, oil, vapor, gas, dripping water and vibration, and there is less salt.		

3.4.3.3. Measurement and judgment

When using ordinary current clamp meter to measure current, there is imbalance of current at the input side. Discrepancy within 50% is normal. If the discrepancy is 70%, notify the manufacturer for replacing the rectifier bridge, or check if the discrepancy of 3-phase voltage exceeds 5 V .

Normally avometer is used to measure 3-phase voltage. Due to the interference of carrier frequency, the readings are not accurate and can be used only for reference. The output voltage should not be higher than the valid value of voltage at the input side. If the voltage exceeds the value, it shows that the avometer is interfered and the output is not abnormal.

4. INSTALLATION AND WIRING

4.1. Installation of frequency inverter

- Please install the frequency inverter on metal or other incombustible. Otherwise there is danger of fire.
- Do not place combustible nearby in case of danger of fire.
- Do not install the frequency inverter in the environment with explosive gas. Otherwise there is danger of explosion.
- Please hold the bottom of the frequency inverter during transportation. Otherwise there is danger of personal injury or damage to the frequency inverter if the main body falls.
- The load carrying capacity of the platform should be taken into consideration during installation. Otherwise there is danger of injury or damage to the frequency inverter if the main body falls.
- Please install the frequency inverter in the safe place with less vibration, direct sunshine, no water splashing.
- Please guarantee the heat sink performance when doing the installation for two or more frequency inverters in one cabinet.
- Do not allow outside small parts, such as screw, washer or metal rod to fall inside the frequency inverter. Otherwise there is risk of fire and damage of the frequency inverter.

4.2. Installation environment

The installation environment is very important for bringing the performance of the frequency inverter into full play and maintaining its functions for a long time. Please install the frequency inverter in the environment shown in the following table.

Table 3.1 Installation environment of the frequency inverter

ENVIRONMENT	CONDITION
Installation site	Indoors
	$\bullet-11 \mathrm{~kW}$ and below: $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
Ambient	-15 kW and above: $-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$
- To raise the reliability of the machine, please use the inverter at the place where there is	
no drastic change of temperature.	
- When the inverter is employed in such enclosed space as control cabinet, please use fan	
or air conditioner for cooling in case the inside temperature surpasses the ambient	
temperature.	
- Avoid freezing in the inverter.	

ENVIRONMENT	CONDITION
Humidity	Below 95\%RH Avoid dew in the frequency inverter
Storage temperature	$-25^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
Environment	The frequency inverter should be mounted at the following sites, where: - There is no oil mist, corrosive gas, flammable gas or dust; - It is not easy for metal powder, oil, water or other foreign substance to get inside the frequency inverter (DO NOT mount the frequency inverter on wood or other flammable body); - There is no radioactive material and flammable object; -There is no harmful gas and liquid; -There is little salt corrosion; -There is no direct exposure to sunshine.
Altitude	1000 m or below
Vibration resistance	$\leq 5.9 \mathrm{~m} / \mathrm{s}^{2}$
Installation direction	BE SURE TO install the frequency inverter in vertical direction so as not to reduce the cooling effect of the frequency inverter.

Instruction of frequency inverter installati on position

BE SURE TO install the frequency inverter in vertical direction as shown in the following Figure 3.1 so as not to reduce the cooling effect of the frequency inverter.

Figure 3.1 frequency inverter installation direction
When installing an individual frequency inverter, be sure to follow the installation instruction shown in Figure 3.2 in order to insure ventilation and wiring space necessary for the frequency inverter. Please keep the back of the frequency inverter close to the wall and mount the frequency inverter. In this way the cooling air around the radiation fins moves freely to ensure cooling effect.

Installation space of the frequency inverter (individual frequency inverter)

Figure 3.2 Installation interval and distance for individual frequency inverter
For installation of more than one frequency inverter inside the control cabinet, side-by-side installation is normally adopted. The cabinet is equipped with air inlet, air outlet and special cooling fan. See Figure 3.3
For vertical installation, airflow guidance separators should be installed among the frequency inverter to achieve better heat dissipation effect.

Installation space of the frequency inverter (side-by-side)

A — Distance over 30mm B — Distance over 100mm C - Ventilation direction

Figure 3.3 Installation interval and distance of multiple frequency inverter

4.2.1. Installation method of frequency inverter

- Refer to Figure 3.4 for confirmation of mounting holes on the frequency inverter.
- Fix the upper screws of the frequency inverter. Take care not to fasten them firmly, but to leave a space of several millimeters for the convenience of fixing the lower screws.
-Fix the lower screws and secure all the screws

Figure 3.4 Installation method of frequency inverter

4.2.2. Disassembly/installation of the cover

Dis-assembly of the frequency inverter cover: Loosen screws of the cover to disassemble it. Take off the outlet board and install the input power supply and motor wire bundle as shown in Figure 3.5.

a) Dis-assembly of the cover

b) Dis-assembly of the outlet board

Figure 3.5 Dis-assembly of the frequency inverter cover
Installation of the frequency inverter cover: After finishing the wiring and confirming correct connection of all wires, put the outlet board back to its original position, close the cover and fasten the screws.

4.3. Wiring of the frequency inverter

! WARNING

- Before wiring the frequency inverter, please confirm that input power supply is completely disconnected. Otherwise there is risk of electric shock.
\bullet Only professional engineering personnel can perform the wiring in case of the risk of electric shock.
- The earthing terminal PE must be properly grounded in case of the risk of electric shock.
- Do not touch directly the wiring terminals with hand and never allow the output wire to contact the enclosure of the frequency inverter. Otherwise there is risk of electric shock.
\bullet Do not connect power supply to the output terminals U, V and W in case of damage to the frequency inverter.

\triangle caution

-Please confirm the voltage of the AC main circuit power supply is in conformity with the rated voltage of the frequency inverter. Otherwise there is risk of fire and personal injury.

- Please correctly select proper cable way in according to power level or it possibly will cause the accident.
-Don't connect input power supply to output terminal $\mathrm{U}, \mathrm{V}, \mathrm{W}$ of the frequency inverter or it will destroy the drive.
\bullet Please notice motor rotating direction when connecting output terminal $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
- Please be sure to follow safety standard and EMC standard when wiring or it will cause the accident.
\bullet Please correctly connect the braking resistances according to the diagram. Otherwise there is risk of fire.
-Don't connect AC 220 signal for the other control terminal except T1A-T1B-T1C or T2A-T2B-T2C or it will cause damage.

Basic operation wiring diagram

Please refer to Figure 3.6 for wiring of the frequency inverter. Make only wiring of the main circuit to start the motor when the frequency inverter is operated with keyboard panel.

(a) Basic wiring diagram of 11 kW and below

(b) Basic wiring diagram of 15 kW and above

Figure 3.6 Basic wiring diagram of the frequency inverter

1. Input voltage signal or current signal can be selected with AI1. The type of input signal can be set by the dial switch S3 on the control board.
2. Correct connection must be followed when external braking resistor is required.
3. In the diagram, " \bigcirc " means main circuit terminal, and " O " means control terminal.

Wiring of the main circuit

The arrangement of the main circuit terminals is shown in Figure 3.7.

(a) the main circuit terminals (11 kW and below)

(b) the main circuit terminals (15 kW and 22 kW)

(c) the main circuit terminals (30 kW and 37 kW)

(d) the main circuit terminals $(45-55 \mathrm{~kW})$

(e) the main circuit terminals $(75-110 \mathrm{~kW})$

(f) the main circuit terminals (132-160kW)

(g) the main circuit terminals (185-220kW)

(h) the main circuit terminals $(250-315 \mathrm{~kW})$

(i) the main circuit terminals $(350-500 \mathrm{~kW})$

(j) the main circuit terminals ($560-800 \mathrm{~kW}$)

Figure 3.7 Diagram of the main circuit terminals of the frequency inverter
Table 3.2 Description of main circuit terminals

Code of terminal	Terminal	Function
R/L1	Power input for main circuit	3 -phase, AC power input terminal, $380 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
S/L2		
T/L3		
U	Output of frequency inverter	Terminal for connection to motor
V		
W		
+, -	DC bus terminal	DC bus terminal, connect to braking unit etc " + " is the positive terminal of DC bus, "-" is the negative terminal
PA/+	Connection of braking resistor	Terminal for connection to braking resistor
PB		
PA/+, +	DC power input	$\mathrm{PA}(+)$ is the positive terminal of DC power input, PC is the negative terminal
	Grounding	Terminal for grounding
		400 V level: grounding resistance is 4Ω or below.

4.3.1. Wiring of the control circuit

(a) the control circuit terminals (11 kW and below)

(b) the control circuit terminals (15 kW and above)

Figure 3.8 Diagram of the control circuit terminals of the frequency inverter
Table 3.3 Description of Control terminals function

Symbol	Item	Function
0 V	public terminal of the control circuit	
5 V	5 V output voltage	Commonly used as working voltage of the external potentiometer Maximum current:10mA accuracy: $\pm 5 \%$
24 V	24 V output voltage	Commonly used as working voltage of the logic input terminal Maximum current:100mA accuracy: 20%
Al1	Voltage/Current Analog input Or	Multifunction programmable analog input: accuracy:10 bit Analog voltage input:0 $\sim+5 \mathrm{~V}$ or 0 $\sim+10 \mathrm{~V}$ Analog current inputt:4~20 mA
	programmable logic input	

Symbol	Item	Function
Al2	Voltage Analog input Or programmable logic input	Analogy voltage input: accuracy:10 bit Maximum range: $0 \sim+10 \mathrm{~V}$
		changing parameter setting, the Al2 can also be used as a programmable logic input terminal. If that, a resistor ($4.7 \mathrm{k} \Omega \sim 10 \mathrm{k}$ $\Omega, 1 / 2 \mathrm{~W}$) should be added between $24 \mathrm{v}-\mathrm{Al} 2$; And move the VIA dip switch to the 10 V position. connection method refers to AI1.
LI1~LI8	programmable logic input	+24 V Power supply
		Positive Logic(source): port voltage $<5 \mathrm{~V}$, input invalid (OFF), port voltage > 11V, input invalid (ON); Negative Logic (sink): port voltage > 16 Vinous invalid OFF port voltage < 10 Vinous invalid ON;
		Logic input connection diagram refers to Figure 3.9.
AO1	Voltage/Current Analog Output1	Ana log voltage output: $0 \sim+10 \mathrm{~V}$ Analog voltage output: $x \sim 20 \mathrm{~mA}$
AO2	Voltage/Current Analog Output2	Analog voltage output: $0 \sim+10 \mathrm{~V}$ Analog voltage output: $x \sim 20 \mathrm{~mA}$
LO1	Pulse output collector1	Maximum current: 100 mA Maximum voltage:30V
CLO1	Pulse output emitter1	
LO2	Pulse output collector2	Maximum current: 100 mA Maximum voltage:30V
CLO2	Pulse output emitter2	
T1A	Relay 1--Normally open (NO) contact	Largest switching capacity: T1A-T1C:5A @ 250VAC,5A @ 30VDC T1B-T1C:3A @ 250VAC,3A @ 30VDC
T1B	Relay 1--Normally closed (NC)contact	
T1C	Relay 1--Public contacts	
T2A	Relay 2--Normally open (NO) contact	Largest switching capacity: T2A-T2C:5A @ 250VAC,5A @ 30VDC T2B-T2C:3A @ 250VAC,3A @ 30VDC
T2B	Relay 2--Normally closed (NC) contact	
T2C	Relay 2--Public contacts	
T5	RS485 communication port	4nd feet is positive port of RS485 differential signa, 5nd feet is the negative port of RS485 difference signal.

Figure 3.8 Wiring diagram when Al1is logic input terminal

5. BASIC OPERATION AND TRIAL RUNNING

5.1. Appearance of keyboard panel

User of this series frequency inverter can perform different operations through keyboard panel, including run/stop, display of different data, parameter value setting, fault display and reset etc. The following is description of the keyboard panel.

Figure 4.1 Each part of the keyboard panel
Table 4.1 Description and function of each part of the keyboard panel

No.	Item	Symbol	Function
1	Numeric display	-	To display frequency or parameter etc using LED.
2	Charging indication lamp	CHARGE	On - there is residual voltage in the frequency inverter DC bus Off - there is no residual voltage in the frequency inverter DC bus
3	Mode indication lamp	RUN	On frequency inverter 's operation demands and frequency instructions are all effective Flashing - frequency inverter 's operation demands are effective, but frequency instructions are ineffective Off - there are no operation demands in frequency inverter
		On - parameter setting mode Flashing - parameter setting mode, or shortcut menu. Off - parameter setting mode, or other modes except parameter verification mode	
		MON	On - state monitoring mode Flashing - in the process of fault record retrieving Off - non state monitoring mode
4	MODE key	MODE	To select keyboard display mode or return to MODE from submenu
5	UP key	$\boldsymbol{\Delta}$	To increase parameter number or parameter set value
6	ESCAPE key	ESC	To return to the previous state before the pressing of the ENT key
7	DOWN key	\boldsymbol{v}	To reduce parameter number or parameter set value
8	ENTER key	ENT	Press the key to display or confirm different modes, parameters or set values

No.	Item	Symbol	Function
9	STOP key	STOP	Press the key to stop the frequency inverter. The key becomes a RESET key when fault is discovered
10	JOG key	JOG	Default is shortcut menu 3. See parameter F for Settings
11	RUN key	RUN	To run the frequency inverter
12	Speed control knob	------	To adjust speed
13	UNIT indication lamp	$\%$	On - Unit of the displayed number is percentage
		Hz	On - unit of the displayed number is Hz

5.2. Basic operation of panel

5.2.1. Running model selection

The frequency inverter include four running models: Powering-on default mode, Parameter setting mode, Status monitoring mode and Parameter verifying mode. Any mode can be realized by the MODE Key, showed as Figure 4.2:

Figure 4.2 Structure of frequency inverter Mode switch
<1>: when F618=1, show parameter setting mode

5.2.2. Powering-on default mode

The display data is the current output frequency under Powering-on default mode, so directly use $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to modify the digital frequency setting, then press the ENT key to save the modified data and return Powering-on default mode, or press the ESC key to give up the modification and return the Powering-on default mode. As showed as Figure 4.3

Figure 4.3 Powering-on default mode Navigation

Here the display data type can be set freely under the Powering-on default mode, showed in the parameter FG 16

5.2.3. Parameter setting Mode

There are 10 groups function parameters fromirg group to $F 9$ group, each group includes different numbers function parameter. The Parameter setting value can be modified by $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key and ENT key, or give up the modification by ESC key, as showed as Figure 4.4

Figure 4.4 Parameter Setting Mode navigation

5.2.4. Status monitoring mode

The status monitoring mode can be used to monitor the current running status of frequency inverter, or check the fault record, the operation shows as the Figure 4.5

Figure 4.5. State monitoring mode navigation
Here: Monitoring parameter only can be used to check, cannot be modified or set.

5.2.5. Parameter verifying mode

When F G $\boldsymbol{G}=1$, use MODE key to switch to parameter calibration mode. Under this mode, we can see all different parameters from the default value. The setup method for these parameters is the same to other parameter setup way. Please see figure 4.6.

Remarks: no other display only "-if-" when pressing the ENT key without change to any parameter

Figure 4.6 Parameter verifying mode navigation

5.2.6. JOG

Under the powering-on mode, when $F \overline{1}$ forward jog and -jog represents reverse jog. Switch between forward/reverse jog can be realized through UP/DOWN keys on the keyboard panel.

5.3. Power on and confirmation of display status

Before switching on the frequency inverter, please do confirm the following items.
Table 4.2 Items to be confirmed prior to switching on the frequency inverter

Item	Description
Confirmation of input power supply voltage	Please confirm if the power suppy is correctly connected (3-phase, $380 \mathrm{VAC} \sim 480 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$) Please confirm if the power supply input terminals R/L1, S/L2 and T/L3 are properly connected. Please confirm whether the frequency inverter and the motor are correctly grounded.
Confirmation of connection of frequency inverter main circuit output terminals with motor	Please confirm the output terminals of the frequency inverter U, V and W are reliably connected with the 3-phase input terminals of the motor.
Confirmation of the connection of the frequency inverter control circuit terminals	Please confirm the control circuit terminals of the frequency inverter are reliably connected with other control devices.
Confirmation of the state of the frequency inverter control terminals	Please confirm that all control circuit terminals are in the state OFF (The frequency inverter does not run when powered on).
Confirmation of the state of the load	Please confirm the condition of the motor load (namely the status of connection with mechanical system).

After the frequency inverter is switched on，the keyboard panel enters into Powering－on mode．The displayed value type at Powering－on mode is determined by the setting value of parameter Fin

5．3．1．Local control mode

The frequency inverter provide two control modes：local and remote．The mode is set with parameter 5 白 6 ．
At local control mode，both the command source and frequency setting source of the frequency inverter are set through the keyboard panel：

1．Command source is given through RUN and STOP keys in order to run or stop the motor．
2．Frequency is given by UP and DOWN keys．Under Powering－on mode，directly press UP key to increase given frequency or DOWN key to reduce given frequency．

Motor rotation direction：Press down the ENT key，then press UP key to set the motor rotation direction as FORWARD；Press down the ENT key，then press DOWN key to set the motor rotation direction as REVERSE． Parameter $\mathscr{5}$ にコ一 is used to limit the ability of the motor to rotate only in a single direction．

Fault reset：When fault occurs in the frequency inverter，the keyboard panel displays the fault code under Powering－on mode．At this time press the STOP key and the keyboard panel displays 后． STOP key again to finish fault reset function．Please see parameter F．5日

Note 1：During the reverse rotation of the motor or when there is instruction of reverse rotation，the function indication lamp REV on the keyboard panel is on．

Note 2：Under local control mode，the function indication lamp LOC on the keyboard panel is on．

4．3．2 Remote control mode

Under remote control mode，the command source and frequency setting source of the frequency inverter are set through parameters $F \mathbb{I}$ be combined in any way．For example，when $F \bar{\square}=1, F=3$ ，the control effect of the inveter is the same as under the local control mode．

Example 1：Two－wire control running

Figure 4．7 Example of wiring for two－wire control running
Table 4．3 Parameter configuration of two－wire control running

Code	Parameter	Set Value	Set Value

F002	Selection of run command	0	0
F003	Selection of frequency command selection	1	1
$F 300$	Al1 input function（analog or logic selection）	0	0
F30：	L1 logic input function	2	2
F303	L2 logic input function	3	3
$F 303$	L3 logic input function	30	10
$F 305$	Logic input mode setting	0	0
$F 305$	Logic input type selection	1	1
$F 309$	Forced－effective Logic input function selection	1	1
F3 60	Forced－effective Logic input function selection 2	0	0
F5ここ	Prohibit motor reverse	0	0
F5こコ	Motor stop type	0	2

Note：When two－wire control is applied，logic input function 30 must be disabled．

Example 2：Three－wire control running（Negative logic）

Figure 4．8 Example of wiring for three－wire control running
Table 4．4 Parameter configuration of 3－wire control running

Code	Parameter	Set Value	Set Value
F0日E	Selection of run command	0	0
F003	Selection of frequency command selection	1	1
F300	Al1 input function（analog or logic selection）	0	0
F30：	L1 logic input function	2	2
F302	L2 logic input function	3	3
Code	Parameter	Set Value	Set Value

Fヨ凫	L3 logic input function	30	30
F305	Logic input mode setting	0	0
F306	Logic input type selection	1	1
F309	Forced－effective Logic input function selection	1	1
F318	Forced－effective Logic input function selection 2	0	0
Fロゴ	Prohibit motor reverse	0	0
トロこコ	Motor stop type	0	3

Example 3：Three－wire control running（Negative logic，motor stops freely）

Figure 4．9 Example of wiring for $4-20 \mathrm{~mA}$ control running
Table 4．5 Parameter configuration of Three－wire control running（Negative logic，Free stop）

Code	Parameter	Set Value
F昌昌碞	Selection of run command	0
F昌旦 3	Selection of frequency command selection	1
F30日	Al1 input function（analog or logic selection）	0
F30i	L1 logic input function	2
F30こ	L2 logic input function	3
	L3 logic input function	34
F305	Logic input mode setting	0
F305	Logic input type selection	1
F309	Forced－effective Logic input function selection	1
F316	Forced－effective Logic input function selection 2	30
Fこご	Prohibit motor reverse	0

Example 4：UP／DOWN acceleration and deceleration（Negative logic）

Figure 4.10 Example of wiring for three-wire control running
Table 4.6 Parameter configuration of UP/DOWN acceleration and deceleration(Negative logic)

Code	Parameter	Set Value
F002	Selection of run command	0
F003	Selection of frequency command selection	5
F30:	L1 logic input function	2
F302	L2 logic input function	3
$F 303$	L3 logic input function	23
$F 304$	L4 logic input function	24
$F 305$	Logic input type selection	1
$F 309$	Forced- effective Logic input function selection	1
F3ig	Forced- effective Logic input function selection 2	0
F5ご	Prohibit motor reverse	0

Figure 4.11 Example of wiring for multistep speed control running
Table 4.7 Parameter configuration of multistep speed control running

Code	Parameter	Set Value
F003	Selection of run command	0
F003	Selection of frequency command selection	5
F30:	L1 logic input function	2
$F 302$	L2 logic input function	3
F303	L3 logic input function	23
F304	L4 logic input function	24
$F 305$	Logic input type selection	1
$F 309$	Forced- effective Logic input function selection	1
F3 6	Forced- effective Logic input function selection 2	0
F5ご	Prohibit motor reverse	0
F000	frequency inverter frequency digital setting	Equal to multistep speed 0
F7:6	Multistep speed 1	Multistep speed 1
F7i	Multistep speed 2	Multistep speed 2
F7:	Multistep speed 3	Multistep speed 3

 press ENT to save the set.

Figure 4.12 Example of wiring for JOG control
Table 4.8 Parameter configuration of JOG control (Negative logic)

Code	Parameter	Set Value
F002	Selection of run command	0
5301	L1 logic input function	2
F302	L2 logic input function	3
$F 303$	L3 logic input function	4
F306	Logic input type selection	1
$F 309$	Forced- effective Logic input function selection	1
$F 310$	Forced- effective Logic input function selection 2	0
F5こ2	Prohibit motor reverse	0
$F 701$	Jog frequency	Set by yourself
F703	Jogging stop mode	Set by yourself

6．DETAILED PARAMETER DESCRIPTION

6．1．Basic parameter group

NO．	Parameter Name	Setting Range	Default
F昌昌	Operation frequency of keypad		0.0

When power on，the frequency inverter displays the operation frequency（when operation stopped，＂In＂is displayed，seeF！ig．Then press the $\boldsymbol{\Delta}$ key or the $\boldsymbol{\nabla}$ key to change the operation frequency（even during operation）．

Press \triangle move the frequency up．Press $\boldsymbol{\nabla}$ move the frequency down，Press the ENT key to save the operation frequency F

Figure 5．1 Procedure of setting F 5
Note1：when set 5
Note2：Pressing the $\mathbf{\Delta}$ key or the $\boldsymbol{\nabla}$ key will change the operation frequency even during operation．

NO．	Parameter Name	Setting Range	Default
F日昌	V／F control mode selection	0～3	0

0 ：V／F constant．When one single frequency inverter is required to drive more than one motor，please select V / f control mode if motor automatic tuning can not be correctly performed or there is no other access to acquire parameters of controlled motor．To increase the torque further，increase the setting value of the manual torque boost．

1：Variable torque．This is appropriate for load characteristics of such things as fans，pumps and blowers in which the torque in relation to load rotation speed is proportional to its square．

2：Sensor－less vector control．Using sensor－less vector control with a standard motor will provide the highest torque at the low speed ranges．
（1）Provides large starting torque
（2）Effective when stable operation is required to move smoothly up from the low speeds．
（3）Effective in elimination of load fluctuations caused by motor slippage．
3：Energy saving mode．Energy can be saved in all speed areas by detecting load current and flowing the optimum current that fits the load．

Note：To use vector control and automatic energy saving，motor constant setting（motor tuning）is required．

NO．	Parameter Name	Setting Range	Default
Fロ	Command mode selection 1	$0 \sim 2$	1

0：Terminal board．ON and OFF of an external signal Runs and stops operation．
1：Keypad．Press the＜RUN＞and＜STOP＞keys on the keypad to start and stop．
2：Serial communication．Run and stop through serial communication．

NO．	Parameter Name	Setting Range	Default
Fに日 3	Frequency setting mode selection 1	$0 \sim 8$	3

0：Built－in potentiometer．
1：Al1 input．Frequency command is set by means of a signal from an external input device（Al1 terminal：0－5V， $0-10 \mathrm{Vdc}$ or $4-20 \mathrm{mAdc}$ ）．

2：Al2 input．An external signal（Al2 terminal： $0-10 \mathrm{Vdc}$ ）is used to specify a frequency command．
3：Keypad（ 10 是 to set frequency．

4：Serial communication．Frequency command is set by commands from an external control unit．
5：UP／DOWN setting from external contact．Terminals are used to specify an up／down frequency command．
6：Al1＋Al2．
7：PID setting of keypad．
8：Simple PLC running option
Note 1：When under local control 58
Note 2：In the case when there is no valid frequency command（e．g，frequency command is under starting frequency setting $\wp 5$ ），the motor does not run even if the frequency inverter receives the run command．At this time the RUN led on the keypad blinks．

NO．	Parameter Name	Setting Range	Default
F OH	Command mode selection 2	$0 \sim 2$	0

Setting method is the same as，
Note：Switching operation between F 日and Fint can be set input terminal function 67 （or 68）beforehand to an input contact terminal．When switching the terminal operation mode to panel operation mode：

If $\mathscr{5}$ には $=1$ ，the motor will keep the running status before switch operation．
If $F \subseteq \Omega=0$ ，the motor stops regardless the running status before the switch operation．

NO．	Parameter Name	Setting Range	Default
Fת5 Mת	Frequency setting mode selection 2	$0 \sim 8$	2

Setting method is the same as 5

NO．	Parameter Name	Setting Range	Default
F日G 日品	Frequency priority selection	$0 \sim 3$	0

1：Switch is disabled
When $56=1$ ，the switch is disabled

At this point，if FI＝，take FGa as the frequency／PID given channel；otherwise，determine the frequency／PID given source according to the setting of F

2：Switch between 5 回
When Figi＝0，frequency／PID given source is determined by
 logical input
3：Switch between FGS and Figis selected frequency／PID source
When FI
When FGI： logical input

Note：To use this feature，a logical input must be defined as function 20，given the frequency／PID source switch When the defined logic input is OFF，the frequency／PID given source is determined by

When the defined logical input is ON，the frequency converter determines the frequency／PID given source by F日G or F日

NO．	Parameter Name	Setting Range	Default
F昌㫛	Maximum frequency	$30.0 \sim 400.0$ Hz	50.0
F昌昌昌	Upper limit frequency	$0.5 \mathrm{~Hz} \sim$ F．8日 7	50.0
F989	Lower limit frequency	$0.0 \mathrm{~Hz} \sim$ F．0日 8	0.0

$F \pi$ sets the range of frequencies output by the frequency inverter（maximum output values）．This frequency is used as the reference for acceleration／deceleration time．

F

 parameters，but also by start frequency，DC braking initial frequency and skip frequency．

NO．	Parameter Name	Setting Range	Default
F in in	Acceleration time 1	$0.0 \sim 3200 \mathrm{~s}$	varies by model
F i i	Deceleration time 1	$0.0 \sim 3200 \mathrm{~s}$	varies by model

FI 18 sets the time that it takes for the frequency inverter output frequency to go from OHz to maximum frequency 5070

Fi i i programs the time that it takes for the frequency inverter output frequency to got from maximum frequency F 57 to 0 Hz 。

Figure 5.3 Definition of acceleration/deceleration time
When the acceleration/deceleration time is set at 0.0 seconds, the frequency inverter speed increases or reduces within 0.1 seconds.

If the programmed value is shorter than the optimum acceleration/deceleration time determined by load conditions, overcurrent stall or overvoltage stall function may make the acceleration/deceleration time longer than the programmed time. If an even shorter acceleration/deceleration time is setted, there may be an over current trip or overvoltage trip for frequency inverter protection.

NO.	Parameter Name	Setting Range	Default
FIコ	PWM carrier frequency	$1.5 \sim 12.0 \mathrm{kHz}$	varies by model

Increase of the switching frequency may reduce the magnetic noise of the motor. However, enhancement of switching frequency will increase heat dissipation. In the event of increase of switching frequency, the capacity of the frequency inverter may require corresponding derating. Normally it is unnecessary to change the parameter because we have done the reasonable setup when ex-factory.

PWM carrier frequency	motor's magnetic noise	Leakage Current	Inverter heat dissipation
2 kHz	increase	decrease	decrease
4 kHz			
12 kHz			

Figure 5.4 Impact on frequency inverter performance by changing carrier frequency

Table 5.1 default carrier frequency value of different model capacity

Model	Max. of F300 (kHz)	Min. of F300 (kHz)	default of F300 (kHz)
$0.4 \sim 11 \mathrm{~kW}$	12.0	1.5	4.0
$15 \sim 30 \mathrm{~kW}$	8.0	1.5	4.0
$37 \sim 500 \mathrm{~kW}$	4.0	1.5	4.0

Note: Although the electromagnetic noise level is reduced, the motor acoustic noise may be increased.

NO.	Parameter Name	Setting Range	Default
Fiヨ	Carrier frequency control mode selection	$0 \sim 1$	1

0: Carrier frequency not reduced automatically
1: Carrier frequency reduced automatically.
Reduction of rated current will be required if the PWM carrier frequency is set high.
When the PWM carrier frequency is set high, selecting "Carrier frequency not reduced automatically" may causes the frequency inverter to be tripped (overheat) more easily than selecting "Carrier frequency reduced automatically ".

Switching frequency level will be automatically controlled in case of overheat trip in the frequency inverter. If the frequency inverter detects upcoming overheat fault, it will lower the switching frequency to reduce the heat dissipation from the drive. With the temperature tending to normal, the switching frequency will return to the level

NO.	Parameter Name	Setting Range	Default
Fir	Random PWM mode	$0 \sim 1$	0

0: Disable.
1: Enable. The random mode reduces motor electromagnetic noise by changing the PWM pattern.

NO.	Parameter Name	Setting Range	Default
FiS	Automatic acceleration/deceleration	$0 \sim 2$	0

0: Disabled (manual).
1: Automatic (at acceleration \& deceleration)
2: Automatic (only at acceleration)
Adjusts the acceleration/deceleration time automatically within the range of $1 / 8$ to 8 times as long as the time set with the (

When automatically setting acceleration/deceleration time, always change the acceleration /deceleration time so that it conforms to the load. The acceleration/deceleration time changes constantly with load fluctuations. For frequency inverter that requires a fixed acceleration/deceleration time, use the manual settings (17

 setting that conforms to further changes in load.

Use this parameter after actually connecting the motor.
When the frequency inverter is used with a load that fluctuates considerably, it may fail to adjust the acceleration or deceleration time in time, and therefore may be tripped.

Note：Manual acceleration and deceleration time may still be restrained by motor current amplitude limit（See
 F4：（6）

NO．	Parameter Name	Setting Range	Default
F日 6	Factory reserved		

NO．	Parameter Name	Setting Range	Default
$F \mathbf{i} \mathbf{7}$	Parameter setting macro function	$0 \sim 19$	0

0 ：Default value．
1：2－wire control（Negative logic mode，ramp stop）．
2：3－wire control（Negative logic mode，ramp stop）．
3：External input UP／DOWN setting（Negative logic mode，slowdown stop）．
4 ～16：Factory reserved

19：Factory reserved
Note 1：All the setup is available only under remote control mode（ $F \boldsymbol{\sigma} \boldsymbol{\sigma}=1$ ）or it cannot recover to the default
 mode，we just set $F ; \bar{i}=1$ and confirm the frequency inverter is under remote control mode．

Note 2：Negative logic means the common point of all input terminal is connected to＂ 0 V ＂terminal on frequency

Note 3： $1^{\text {sT }}$ LED Display on the left is the value for $F ; 7$ last setting

NO．	Parameter Name	Setting Range	Default
F旦昭	Factory reserved		
F昌云吕	Factory reserved		

NO．	Parameter Name	Setting Range	Default
FRゴ	Primary and secondary frequencies／PID are given	$0 \sim 4$	0

0：Single channel given
When 5 名
When Figfo，frequency／PID given source is determined by Fig

 value is limited by upper and lower limits．

2: F003-F0日5

 given value, and its value is limited by the upper and lower limits.

 given value, which is limited by upper and lower limits.

 given value, which is limited by upper and lower limits.

NO.	F03:	F005	Final frequency setting
1	0	0	Switch between 5
2	0	1/2/3	F003
3	1/2/3/4	0/1	$F \begin{aligned} \text { Fl }\end{aligned}$ The selected given source
4	1/2/3/4	2	input
5	1/2/3/4	3	input

Example 1: when $F 903+F \pi 5$ operation and $F 905=3 / 7$, press $\triangle \nabla$ button to adjust the frequency /PID of FO日 3 channel, and can increase or decrease.

- The set remains unchanged when the machine stops; When the power is off, it is not saved. After the power is on, it is the original set of $F 0 \square \exists$ channel. Set to:

- When the machine stops or power is switched off, the set is not saved, and the original set of $F \pi \square$ channel is restored. Set to:

 adjusted directly through UP/DOWN function, and can be increased or decreased. (Applicable to both frequency setting and PID setting)
－The set remains unchanged when the machine stops；

－Do not save when shutdown and power down，restore to the original

NO．	Parameter Name	Setting Range	Default
Fロご	F易 frequency given coefficient	0．0～100．0\％	100.0 \％
ト日ゴ	F9\％ 9 frequency bias given	$0.0 \mathrm{~Hz} \sim 400.0 \mathrm{~Hz}$	0.0 Hz

Example 1：Processing with a given frequency
 F日ゴ。

Example 2：processing given by PID（note：consider the original 505 as a given frequency here）
The final frequency PID given for 5 品

Note：The final frequency／PID given for 5 channel may be positive or negative．

NO．	Parameter Name	Setting Range	Default
Fロッ4	Lower limit selection and 5 ¢	0～5	0

Function 1：Select the lower limit value of panel potentiometer／Fis／UP＿DOWN；
Function 2：When selecting F press $\boldsymbol{\Delta} \boldsymbol{\nabla}$ button to adjust the treatment method of given frequency

F昌ご	Panel potentiometer／F 0 昌 given lower limit selection	3／7， press $\Delta \boldsymbol{\nabla}$ button to adjust a given treatment
0	（1）Frequency given：59 （2）PID given：F9 17 ＊F 日 日 F6日	Press button $\triangle \nabla$ to adjust the value of $F 98$ and use
1		Press button $\boldsymbol{\Delta V}$ to adjust F 9 channel on the given basis，give keep the same when stop；When the power is off，it is not saved．After the power is on，it is the original set of 19 channel．
2		Press button $\boldsymbol{\Delta} \boldsymbol{\nabla}$ to adjust F 5 channel on the given basis，don＇t save the given when stop and power off，restore to the original given of F 万日 channel．

F岛	Panel potentiometer／F昌吕／UP＿DOWN given lower limit selection	3／7， press $\boldsymbol{\Delta \nabla}$ button to adjust a given treatment
3		Press button $\triangle \nabla$ to adjust the value of $F \Omega \Omega$ and use
4	0．0Hz	given basis，give keep the same when stop；When the power is off，it is not saved．After the power is on，it is the original set of 59 channel．
5		given basis，don＇t save the given when stop and power off，restore to the original given of 5

NO．	Parameter Name	Setting Range	Default
F999	Manufacturer reserve（same as 5 ¢	－	－

6．2 Motor and its protection parameter group

NO．	Parameter Name	Setting Range	Default
Frin	Auto－tuning	$0 \sim 2$	0

0 ：Auto－tuning disabled（use of internal parameters）．
1：Application of individual settings of
2：Auto－tuning enabled（after execution： 0 ）．
When auto－tuing，set the following parameters at least，as specified on the nameplate of the motor：

Set Fig to 2 before the start of operation．Tuning is performed at the start of the motor then．
 frequency（rated rotational speed）and base frequency voltage（rated voltage）of the motor to be operated， respectively．If not，set the parameters correctly．

When using the frequency inverter to control the operation of a motor smaller in capacity by one grade or more， be sure to set the motor rated current setting parameter（ 17 各

Vector control may not operate properly if the motor capacity differs from the applicable rated capacity of the frequency inverter by more than two grades．

If current waveforms oscillate during operation，increase the speed control stability factor（ effective in suppressing oscillation．

Precautions on auto－tuning：
（1）Conduct auto－tuning only after the motor has been connected and operation completely stopped．If auto－ tuning is conducted immediately after operation stops，the presence of a residual voltage may result in abnormal tuning．
（2）Voltage is applied to the motor during tuning even though it barely rotates．During tuning，＂tun1＂is displayed on the keypad．
（3）Tuning is performed when the motor starts for the first time after 5
Tuning is usually completed within three seconds．If it is aborted，the motor will trip with the display of $\boldsymbol{\square}-\boldsymbol{\square}$ and no constants will be set for that motor．
（4）High－speed motors，high－slip motors or other special motors cannot be auto－tuned．
（5）Provide cranes and hoists with sufficient circuit protection such as mechanical braking．Without sufficient circuit protection，the resulting insufficient motor torque during tuning could create a risk of machine stalling／falling．
（6）If auto－tuning is impossible or an＂E－4ロ＂auto－tuning error is displayed．
（7）If the frequency inverter is tripped during auto－tuning because of an output phase failure（ $E-4 \Xi$ ），check if the frequency inverter is connected to the correctly．A check for output phase failures is made during auto－tuning， regardless of the setting of the output phase failure detection mode selection parameter（ 54 品）

NO．	Parameter Name	Setting Range	Default
F181	Base frequency 1	$25.0 \sim 400.0 \mathrm{~Hz}$	50.0
F1気	Base frequency voltage1	50～660V	varies by model
F1星	Motor rated current	varies by model	varies by model
F1年	Motor rated speed	100～15000 rpm	varies by model

SetF：
Note 1：Please set according to the motor nameplate parameters．Excellent control performance of vector control requires accurate motor parameters．

Note 2：Frequency converter provides parameter self－learning function．Accurate parameter self－learning comes from the correct input of motor nameplate parameters．In order to ensure the control performance，please try to ensure the inverter and the motor power match，otherwise，the inverter control performance will be significantly reduced．

Note 3：When the rated power of the field frequency converter is greater than the rated power of the motor，the motor overload protection should be enabled to prevent the motor from burning out．The motor overload protection function must set the following parameters：
1）Fi日 or F i
2） $54 i=0$ or 4 ，set to enable overload protection of ordinary motor or forced air－cooled motor．
3）$F 4$ Hets motor overload time，which defaults to 300 seconds．

NO．	Parameter Name	Setting Range	Default
F 1 日 5	Motor no－load current	$10.0 \sim 100.0 \%$	varies by model

Set the ratio of the no－load current of the motor to the rated current．Enter the value in \％that is obtained by dividing the no－load current by the rated current．

NO．	Parameter Name	Setting Range	Default
F 日 5	Motor electronic thermal protection level 1	varies by model	varies by model

Set the motor rated current specified on the namelate of the motor to F ．This parameter allows selection of the appropriate electronic thermal protection characteristics according to the particular rating and characteristics of the motor．
 standard value is the rated output current indicated on the nameplate．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{1} \mathbf{7}$	stall prevention level 1	varies by model	varies by model

This parameter adjusts the output frequency by activating a current stall prevention function against a current exceeding the $F i=7$ specified level．
Note 1：Do not set $F: \overline{7}$ under the rated motor no－load current．Otherwise the frequency inverter will determine that it is performing motor braking and increase the frequency applied to the motor．
 standard value is the rated output current indicated on the nameplate．
Note 3：When frequency inverter current is exceeding the $F i=1$ specified level：
－Output frequency is adjusted current exceeding the $F 107$ specified level．
－During an OC alarm status，（that is，when there is a current flow in excess of the stall prevention level），the output frequency changes．At the same time，＂－－－5＂is displayed flashing on and off．

NO．	Parameter Name	Setting Range	Default
F 108	Base frequency 2	$25.0 \sim 400.0$ Hz	50.0
F 109	Base frequency voltage 2	50～660 V	varies by model
$F ; 10$	Motor electronic－thermal protection level 2	varies by model	varies by model
Fiti	Stall prevention level 2	varies by model	varies by model

Use the above parameters to switch the operation of two motors with a single frequency inverter and to select motor V／F characteristics（two types）according to the particular needs or operation mode．
The FIS ；（V／F control mode selection）parameter is enabled only for motor1．If motor 2 is selected，V／F control will be given constant torque characteristics．

NO．	Parameter Name	Setting Range	Default
F 1コ～F	Factory reserved		

NO．	Parameter Name	Setting Range	Default
Fース	Default setting	$0 \sim 9$	0

0 ：－
1：Standard default setting（Initialization）
2：Save user－defined parameters
3：Call user－defined parameters
4：Trip record clear
5：Cumulative operation time clear
6：Cumulative fan operation time record clear

7: Initialization of type information
8: P-type rating. (Nomal duty, for variable torque load characteristic like pumps and fans).
9: G-type rating. (Heavy duty, for constant torque load characteristic).
Note1: This function will be displayed as 0 during reading on the right. This previous setting is displayed on the left. Example: 10 . inverter first and then program.
 their factory default settings.

Note 3: G-type and P-type: G-type refers to applications requiring constant torque output, while P-type applications with variable torque needs. The drive allows the user to select G-type or P-type ratings for the frequency inverter depending on the application. Fans, pumps, and blowers should use P-type ($F=8=8$), and other applications generally use G-type ($F, \boldsymbol{Z}=9$) . Differences between G-type ratings and P-type ratings for the drive include rated input and output current, overload capacity, carrier frequency, and current limit.

Duty types	Stall prevention level	overload tolerance	First digit of u000 display
G-type (heavy duty)	150%	150% rated output current for 60 s	"g" (e.g. g100)
P-type(Normal duty)	120%	120% rated output current for 60 s	"p" (e.g. p100)

Note 4: when set \boldsymbol{F}

6.3 Motor control parameter group

NO.	Parameter Name	Setting Range	Default
FI i	Supply voltage correction (limitation of output voltage)	$0 \sim 3$	3

0: Supply voltage uncorrected, output voltage limited.
1: Supply voltage corrected, output voltage limited.
2: Supply voltage uncorrected, output voltage unlimited.
3: Supply voltage corrected, output voltage unlimited.
If
Even if the base frequency voltage $(\underset{\sim}{\square}$ input voltage.

The rate of voltage to frequency can be adjusted according to the rated motor capacity. For example, setting FI operation frequency exceeds the base frequency.

When the V/F control mode selection parameter (176 voltage is corrected regardless of the setting of $F i=1$.

Figure 5．5 Description of voltage correct and voltage limit

NO．	Parameter Name	Setting Range	Default
Fこロコ	Voltage boost 1	$0.0 \sim 30.0 \%$	varies by model
Fこの	Torque boost	$0.0 \sim 30.0 \%$	varies by model

If torque is inadequate at low speeds，increase torque by raising the torque boost rate with these two parameters． Perform adjustments according to the actual operation．

f203 is effective when $5 ;$
Note：Be careful not to increase the voltage boost or torque boost rate too much because it could cause an overcurrent trip or $\Xi-45$ at startup．

NO．	Parameter Name	Setting Range	Default
Fル4	Slip frequency gain	$0 \sim 150 \%$	50

Set the compensation gain for the slipping of the motor．A higher slip frequency gain reduces motor slipping correspondingly．

NO．	Parameter Name	Setting Range	Default
F985	Exciting current coefficient	100～130 \％	100

FIS is used to fine adjust the magnetic field increase rate in low－speed range．To increase the torque in low－ speed range，specify a larger value for F に号。

Note：This parameter should be adjusted only when enough torque cannot be obtained，even though auto－tuning （ $F \boldsymbol{F} \boldsymbol{\Omega}$ parameter may cause an increase in the no－load current in low－speed range．If the no－load current exceeds the rated current，do not adjust this parameter．

NO．	Parameter Name	Setting Range	Default
Fにロ	Voltage boost 2	$0 \sim 30 \%$	varies by model

Setting method is the same as ミロー．

NO．	Parameter Name	Setting Range	Default
にT	Speed control response coefficient	$1 \sim 150$	40
R日	Speed control stability coefficient	$1 \sim 100$	20

Use these two parameters to adjust the speed of response and stability to the frequency command．
How to make adjustments according to the moment of inertia of the load：
The moment of inertia of the load（including that of the motor shaft）was set at the factory on the assumption that it would be three times as large as that of the motor shaft．If this assumption does not hold，calculate the values to
 Where＇a＇is the times by which the moment of inertia of the load is larger than that of the motor．After the above adjustments，if necessary，make fine adjustments as described below．

- To increase（reduce）the response speed：Increase（reduce）the setting of \boldsymbol{F} 亿号
- If overshooting or hunting occurs：Increase the setting of \boldsymbol{F} 日。
－If reduction gears or the like squeak：Increase the setting of $\mathcal{F} \boldsymbol{\square}$
－If an over－voltage trip occurs on completion of acceleration：Increase the setting of $\mathbb{E R}$ ．
Note 1：When making the above adjustments，increase or decrease settings in steps of 10% or so while checking how things change．
 the frequency inverter is set so as to accelerate the load in the shortest possible time．

Figure 5． 6 Relations of speed response and F

NO．	Parameter Name	Setting Range	Default
にG	Stall prevention control coefficient 1	$10 \sim 250 \%$	100

Use this parameter along with $\sqrt[\Omega]{ } 16$ adjusts characteristics in a region in which the frequency is above the base frequency（region where the field is weak）．If a heavy load is applied instantaneously（or transiently），the motor may stall before the load current reaches the current set with the stall prevention level 1 parameter （ 1797 ）．In many cases，this kind of stall can be avoided by gradually reducing the setting of

NO．	Parameter Name	Setting Range	Default
Fこ 9	Stall prevention control coefficient 2	50～150\％	100

Using this parameter along with 5 adjusts characteristics in a region in which the frequency is above the base frequency（region where the field is weak）．
＊How to make adjustments in a region（region where magnetic field is weak）above the base frequency：
A drop in supply voltage may cause fluctuations of the load current or vibration of the motor．In some cases，such phenomena can be eliminated by changing the setting of $\sqrt[F]{ } 1 / \overline{1}$ to between 80 and 90 ．However，this may cause an increase in load current，so that it is also necessary to adjust the setting of the electronic thermal protective level 1 parameter（

NO．	Parameter Name	Setting Range	Default
Fコ $\boldsymbol{\text { I }}$	Maximam voltage adjustment coefficient	$90 \sim 120 \%$	104

Specify a larger value for $\boldsymbol{F}^{\text {g }}$ ； ；to secure as high an output voltage as possible in a region（region where magnetic field is weak）above the base frequency．Setting $F \mathbf{I} ;$ to a larger value may cause the motor to vibrate or gears to squeak．If such a phenomenon occurs，do not adjust this parameter．

NO．	Parameter Name	Setting Range	Default
Fココ	Waveform switching adjustment coefficient	$0.1 \sim 14.0 \mathrm{kHz}$	14.0

Specify a larger value for \mathcal{F} İ if switching from a waveform to another resulting in a considerable increase in vibration and noise in middle－speed range（region between the start frequency and the base frequency）．If no improvement can be made by specifying a larger value，do not adjust this parameter．

NO．	Parameter Name	Setting Range	Default
Fゴコーゴロ	Pactory reserved		

NO．	Parameter Name	Setting Range	Default
Fミ゙ア	Pultipoint profile V／F patter	$0 \sim 2$	0

0 ：factory reserved．1：factory reserved．
2：Enable multipoint profile V／F patter．
The drive utilizes a set V／f pattern（ $\mathcal{F} \mathbf{I} \boldsymbol{Z}=2$ ）to determine the appropriate output voltage level for each relative to the frequency reference．

NO．	Parameter Name	Setting Range	Default
$F \Xi 1 日$	Point 1 output frequency（F1）	0～ローゴ心	10.0
NO．	Parameter Name	Setting Range	Default

NO．	Parameter Name	Setting Range	Default
Fこ19	Point 1 output frequency voltage（V1）	0～100\％	20.0
Fここ召	Point 2 output frequency（f2）	Fこイ日～トご哭	20.0
Fこコ1	Point 2 output frequency voltage（V2）	0～100\％	40.0
Fごコ	Point 3 output frequency（f3）	Fロコロ～F 181	30.0
Fコココ	Point 3 output frequency voltage（V3）	0～100\％	60.0

Set up the V／f pattern with ローロロ～にココ as shown in according to the load characteristic．
Note 1：The following condition must be true when setting up the V / f pattern： $\mathrm{V} 1<\mathrm{V} 2<\mathrm{V} 3, \mathrm{~F} 1<\mathrm{f} 2<\mathrm{f} 3$ ．
Note：Too high voltage output at low speed will cause a serious motor heat dissipation problem，or stall prevetion alarm，or over current trip．

Figure 5．7 Multipoint profile V／F patter $(F \mathbf{F}$ ： $7=2)$

6．4 Process PID parameter group

NO．	Parameter Name	Setting Range	Default
Fヨ日	Al1 terminal function selection	$0 \sim 2$	0

0：Al1－analog input
1：Al1－contact input（Sink mode）
2：Al1－contact input（Source mode）
This parameter allows you to choose between analog signal input and contact signal input for the Al1 terminal．
When using the Al1 terminal as analog input，be sure FIG is configured right（0～5VDC，0～10VDC，or $0 \sim 20 \mathrm{~mA}$ ）．
When using the Al1 terminal as contact input terminals in sink logic connection，be sure to insert a resistor between the 24 V terminal and the VIA terminal．（Recommended resistance： $4.7 \mathrm{k} \Omega \sim 10 \mathrm{k} \Omega 1 / 2 \mathrm{~W}$ ）．

Note1：Not valid when capacity rating is at 15 kw or above．

NO．	Parameter Name	Setting Range	Default
$F=\boldsymbol{Z} \boldsymbol{G}$	Input terminal function for LI1	$0 \sim 75$	2

NO.	Parameter Name	Setting Range	Default
	Input terminal function for LI2	0~75	3
F303	Input terminal function for LI3	0~75	0
F304	Input terminal function for LI4	0~75	10

Use the above parameters to send signals from an external programmable controller to various control input terminals to operate and/or set the frequency inverter. The desired contact input terminal functions can be selected from table 5.2.

Table 5.2 Description of input terminal function

$\begin{gathered} \text { Input } \\ \text { terminal } \\ \text { function NO. } \end{gathered}$	Function name	Description
0	No function is assigned	Disabled
1	Standby terminal	ON: Ready for operation OFF: Coast stop (gate off)
2	Forward run command	2-wire operation ON: Forward run OFF: Slowdown stop
		3 -wire operation OFF \rightarrow ON: forward run.
3	Reverse run command	2-wire operation ON: Reverse run. OFF: Slowdown stop
		3 -wire operation OFF \rightarrow ON: Reverse run.
4	Jog run mode	ON: Jog run OFF: Jog run canceled
5	Acceleration/deceleration 2 pattern selection	ON: Acceleration/deceleration 2 OFF: Acceleration/deceleration 1 or 3
6	Preset-speed command 1	Selection of 15-speed with LI1 to LI4 (4 bits)
7	Preset-speed command 2	
8	Preset-speed command 3	
9	Preset-speed command 4	
10	Reset command	ON: Acceptance of reset command ON \rightarrow OFF: Trip reset
11	Trip stop command from external input device	OFF: No Trip ON: $E-4 \exists$ Trip stop according to the stop mode set by 540
13	DC braking command	OFF: No DC braking command ON: DC braking started. DC braking current level and DC braking time is set by $F 5 \pi$ and $F 5 \pi G$ respectively.

Input terminal function NO．	Function name	Description
14	PID control disabling	OFF：PID control enabled． ON：PID control disabled． The input terminal function of PID control disabling is used for switching between PID control and open－loop control． Clearance of PID integral value function can also be used．
15	Permission of parameter editing	ON：Parameter editing permitted OFF：Parameter editing prohibited（If $F 700=1$ ）
16	Combination of standby and reset commands	ON：Simultaneous input from standby and reset commands
17	Frequency source switching to Al1	ON：Frequency source switched to Al1 OFF：Frequency source as per F 5 日
18	Combination of forward run and jog run	ON：Forward jog operation
19	Combination of reverse run and jog run	ON：Reverse jog operation
20	Frequency setting source switching	ON：The frequency inverter follows the speed setting set by F0日S（when Fiti＝1）． OFF：The frequency inverter follows the speed setting set by $F 003$ ．
21	No． 2 Switching of V／F setting	
22	No． 2 motor switching	
23	Frequency UP signal input from external contacts	ON：Increase in frequency
24	Frequency DOWN signal input from external contacts	ON：Reduction in frequency
25	Frequency UP／DOWN cancellation signal input from external contacts	OFF \rightarrow ON：Resetting of UP／DOWN frequency by means of external contacts
26	inversion of trip stop command from external device	OFF： $\boldsymbol{E}-4 \Xi$ Trip stop according to the stop mode set by F403
27	Thermal trip stop signal input from external device	ON：$E-\Xi 5$ Trip stop

$\begin{gathered} \text { Input } \\ \text { terminal } \\ \text { function NO. } \end{gathered}$	Function name	Description
28	inversion of thermal trip stop signal input from external device	OFF：こ－コ Trip stop
29	Forced switching from remote to local control	Enabled when remote control is exercised ON：Local control（setting of cmod，F日玉，F日 日 和 F日 5 ）OFF：Remote control
30	Operation holding（stop of 3－wire operation）	ON：forward／reverse run held，3－wire operation OFF：Slowdown stop
31	Forced switching of command mode and terminal board command	ON：Terminal board operation OFF：Setting of F 日
32	Display cancellation of the cumulative power amount（kWh）	ON：Monitor display cancellation of the cumulative power amount（kWh）
33	Fire－speed control seeに4ig	ON：Fire－speed operation（preset speed operation frequency $F 7 \boldsymbol{F} \boldsymbol{F} \boldsymbol{1}$ ） OFF：Normal operation
34	Coast stop（gate off）	ON：Coast stop（gate off）
35	Inversion of Reset	ON：Acceptance of reset command OFF \rightarrow ON：Trip reset
36	Forced switching of stall prevention level 2	ON：Enabled at the value of $F ; 1 ;$ OFF：Enabled at the value of $F 17$
37	PID control integral value clear PID control integral value clear	ON：PID control integral value always zero OFF：PID control permitted
38	inversion of PID error signal	ON：PI error input＝feedback - setting OFF：PI error input＝setting - feedback
39	Forward running command ＋Acc\＆Dec curve 2	ON：电机正向运行，按加减速曲线 2 沿斜坡加速 ON：Motor forward running，follow Acc\＆Dec curve 2 to do the ramp acceleration
40	Reverse running command ＋Acc\＆Dec curve 2	ON：Motor reverse running，follow Acc\＆Dec curve 2 to do the ramp acceleration
41	Forward running command ＋Multi－speed section 1	ON：Motor forward running and activate multi－speed section 1
42	Reverse running command ＋Multi－speed section 1	ON：Motor reverse running and activate multi－speed section 1

Input terminal function NO.	Function name	Description
43	Forward running command + Multi-speed section 2	ON: Motor forward running and activate multi-speed section 2
44	Reverse running command + Multi-speed section 2	ON: Motor reverse running and activate multi-speed section 2
45	Forward running command + Multi-speed section3	ON: Motor forward running and activate multi-speed section 3
46	Reverse running command + Multi-speed section 3	ON: Motor reverse running and activate multi-speed section 3
47	Forward running command + Multi-speed section 4	ON: Motor forward running and activate multi-speed section 4
48	Reverse running command + Multi-speed section 4	ON: Motor reverse running and activate multi-speed section 4
49	Multi-speed section 1 + Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2 and multi-speed section 1 at the same time
50	Multi-speed section 2 + Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2 and multi-speed section 2 at the same time
51	Multi-speed section 3 + Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2 and multi-speed section 3 at the same time
52	Multi-speed section 4 + Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2 and multi-speed section 4 at the same time
53	Forward running command+Multispeed section 1+ Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2, forward running command and multi-speed section 1 at the same time
54	Reverse running command+Multispeed section 1+ Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2, reverse running command and multi-speed section 1 at the same time
55	Forward running command+Multispeed section 2+ Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2, forward running command and multi-speed section 2 at the same time
56	Reverse running command+Multispeed section 2+ Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2, reverse running command and multi-speed section 2 at the same time
57	Forward running command+Multispeed section 3+ Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2, forward running command and multi-speed section 3 at the same time
58	Reverse running command+Multispeed section 3+Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2, reverse running command and multi-speed section 3 at the same time
59	Forward running command+Multispeed section 4+ Acc\&Dec curve 2	ON: activate Acc\&Dec curve 2, forward running command and multi-speed section 4 at the same time

Input terminal function NO．	Function name	Description
60	Reverse running command＋Multi－speed section 4＋Acc\＆Dec curve 2	ON：activate Acc\＆Dec curve 2，reverse running command and multi－speed section 4 at the same time
61	UP／DOWN speed clean up＋fault reset	When it is OFF to ON，clean up UP／DOWN speed input setup frequency level
62	Running permission＋Forward running command（only 2－wire control）	ON：Activate running permission and forward running command at the same time．
63	Running permission＋reverse running command（only 2 －wire control）	ON：Activate running permission and reverse running command at the same time．
64	Acc\＆dec curve 3	ON：Motor follows acceleration curve 3
65	Acce／Dece curve 3 + Forward running command	ON：Activate forward running and acce／dece curve 3 command at the same time．
66	Acce／Dece curve 3 + Reverse running command	ON：Activate reverse running and acce／dece curve 3 command at the same time．
67	Command source switch	OFF：command source press FR日 ON：command source press FR日
68	Command source＋frequency source switch	OFF：Command source press F 亿日 2 and frequency source press 5 O 3 ON：Command source press F 是 4 and frequency source press 5065
69	Three－wire control stop reverse	OFF：Ready for running ON：decelerate along the ramp until stop
70	Reset when simple PLC stops	OFF：Command source is F 日昭 ON ：Command source is 50
71	Simple PLC time out	OFF：Invalid ON：Effective
72	Simple PLC pause	OFF：Invalid ON：Effective
73	PID control＋frequency given source	OFF：Control disable＋set $F 0.5$ for the given frequency source ON：Control disable＋set $F \square \square$ for the given frequency source
74	switch	OFF：Control disable＋set $F 0.5$ for the given frequency source ON：Control disable＋set $F \square \square$ for the given frequency source
75	（UP／DOWN）stop speed clearance	ON：（UP／DOWN）stop speed clear effective OFF：（UP／DOWN）stop speed clearance is invalid

Note 2：The difference between 2－wire control and 3－wire operation configuration lies in whether logic input function 30 （3－wire control shutdown input）is used．

NO．	Parameter Name	Setting Range	Default
Fヨロ	Al1 voltage－current input selection	$0 \sim 2$	0

$0: 0 \sim 5 \mathrm{~V}$ voltage signal input．
1：0～10V voltage signal input．
2： $0-20 \mathrm{~mA}(4-20 \mathrm{~mA})$ current signal input．
Note：Al2 only accept 0～10VDC voltage signal input，setting value of 59 will not change the characteristic of Al2．

NO．	Parameter Name	Setting Range	Default
Fヨロ ロ	sink／soruce mode selection	$0 \sim 1$	1

0：Source（Positive）logic terminal mode．
1：Sink（Negative）logic terminal mode

NO．	Parameter Name	Setting Range	Default
Fヨi7	AO voltage－current output selection	$0 \sim 1$	1

0 ：Current signal output．
1：Voltage signal output．

NO．	Parameter Name	Setting Range	Default
Fヨロ	Input terminal function of Al1	$0 \sim 75$	0

When F F 亿

NO．	Parameter Name	Setting Range	Default
F989	Always－active terminal selection 1	0～75	1
F3 19	Always－active terminal selection 2	0～75	0

$F \exists 9$ and $F \exists 19$ specifies an input terminal function that is always to be kept active（ON）．
Running／Stop

Figure 5．8 Always active terminal function

Note 1：Use F contact terminal which are always activated．See Figure 5．8．

NO．	Parameter Name	Setting Range	Default
Fヨi	Output terminal function A of LO1－CLO1	0～255	4
Fコロ	Output terminal function B of LO1－CLO1	0～255	255

The set method is same as $\mathbb{Z}: 5$ ．

Figure 5．9 Output of LO－CLO wiring example
Fコ

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\Xi}$	Al1 terminal function selection	0	0

0：Al2－analog input
1：AI2－contact input（Sink）
2：Al2－contact input（Source）

NO．	Parameter Name	Setting Range	Default
Fヨ $\mathbf{1 4}$	Input terminal function of AI2	$0 \sim 75$	0

The set method is same as F3日 i～下

NO．	Parameter Name	Setting Range	Default
Fヨ $\Xi \Xi$	Output terminal function A of T1	$0 \sim 255$	40

a）Relay in OFF status

b）Relay in ON status

Figure 5．10 Description of relay status
Table 5．3 Description of output terminal function

Logic output Function Settings	Relay state	Operation
0	OFF	Output frequency \leq lower limit frequency setting of $F 0.09$
	ON	Output frequency > lower limit frequency setting of F009
2	OFF	Output frequency < upper limit frequency setting of F0日a
	ON	
4	OFF	Output frequency < setting of $1: \exists 7$
	ON	Output frequency \geq setting of $¢ \Xi \Xi 7$
6	OFF	
	ON	
8	OFF	
	ON	
10	OFF	Output frequency $\leq F \exists \exists B-F \exists \exists 9$
	ON	
12	OFF	Frequency commanded by F O 3 or $F 005 \pm$ Al1 value
	ON	Frequency commanded by $F 003$ or $F 005=$ Al1 value
14	OFF	Frequency commanded by 500 or $5005 \neq \mathrm{Al2}$ value
	ON	Frequency commanded by $F 003$ or $F 005=\mathrm{Al} 2$ value
16	OFF	Al1 value $5=348-F 34$ (
	ON	Al1 value $\geq F=340+F=4$;
18	OFF	
	ON	
20	OFF	Terminal other than Al2 selected as frequency command
	ON	Al2 selected as frequency command
22	OFF	Operation stopped
	ON	When operation frequency is output or during ($B-0 \mathbf{7}$)
24	OFF	Not for ready for operation
	ON	Ready for operation (Input function of standby and run are not ON)
26	OFF	forward run
	ON	reverse run
28	OFF	remote control mode
	ON	local control mode
30	OFF	No Frequency converter fault (no fault output during automatic fault reset attempt)
	ON	Frequency converter fault
32	OFF	Torque current is equal to or less than F-Fiz-F4:
	ON	Torque current is equal to or larger than $F \dot{F}$ iق set value and longer than F4: 4 set time.
34	OFF	The output current is equal to or larger than $F 408+5409$
	ON	The output current is equal to or less than $F 408$ for $F 46$ set time

Logic output Function Settings	Relay state	Operation
36	OFF	When frequency inverter is not significant trip
	ON	When frequency inverter is significant trip
38	OFF	When frequency inverter is not insignificant trip
	ON	When frequency inverter is insignificant trip
40	OFF	No Frequency converter fault
	ON	Frequency converter fault (out of order during automatic fault reset attempt)
42	OFF	alarm off
	ON	alarm on
44	OFF	calculated value of motor overload level $<50 \%$
	ON	calculated value of motor overload level $\geq 50 \%$
46	OFF	calculated value of brake resister overload level < 50\%
	ON	calculated value of brake resister overload level $\geq 50 \%$
48	OFF	
	ON	Torque curren \geq F4,
50	OFF	Cumulative operation time < F 42 g setting
	ON	Cumulative operation time $\geq F 4 \leq G$ setting
52	OFF	Calculation for parts replacement time is shorter than the preset time (internally preset)
	ON	Calculation for parts replacement time is equal to or longer than the preset time (internally preset)
54	OFF	Nomal condition
	ON	PTC detected value $\geq 60 \%$ of protection level
56	OFF	Other than undervoltage detected
	ON	Undervoltage detected
58	OFF	Mechnical brake release
	ON	Mechnical brake not release
60	OFF	Motor is not in acceleration state
	ON	Motor is in acceleration state
62	OFF	Motor is not in deceleration state
	ON	Motor is in deceleration state
64	OFF	Motor is not in acceleration or deceleration state
	ON	Motor is in acceleration or deceleration state
66	OFF	Heat sink temperature still not reach alarm value
	ON	Heat sink temperature reaches alarm value
68	OFF	PLC recycle is under running
	ON	After completing one PLC recycle, then export one On-pulse
70	OFF	Under running at one PLC section
	ON	After completing one PLC section, then export one On-pulse

Logic output Function Settings	Relay state	Operation
72	OFF	The converter is not ready
	ON	The converter is ready to receive the running signal
74～79	OFF	Not used
	ON	Not used
80	OFF	LI1 input is invalid
	ON	LI1 input is valid
82	OFF	LI2 input is invalid
	ON	LI2 input is valid
84	OFF	PID feedback pressure equal to or below F627－F628
	ON	PID feedback pressure is equal to or higher than F627＋F628
86	OFF	PID feedback pressure is equal to or below F918
	ON	PID feedback pressure is equal to or higher than F918＋F628
88～253	OFF	Not used
	ON	Not used
254	OFF	Relay Output always OFF
255	ON	Relay Output always ON

Note 1：Inversion logic can be obtained by add 1 to the output terminal function mumber．Example：$F \Xi \leq 5=3$ is the invertion logic action of $\mathscr{\exists}$ ： $5=2$ ．
和 T1，T2（Fコ

NO．	Parameter Name	Setting Range	Default
Fヨ $\boldsymbol{\Xi}$	Output terminal logic selection of LO1－CLO1	$0 \sim 1$	0

1：FヨifORFヨiコ．The logical sum（OR）of $\vDash \exists i t$ and $F \exists i \Xi$ will be output to LO1－CLO1．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\mathfrak { I }}$	LO1－CLO1 output delay	$0 \sim 60.0 \mathrm{~s}$	0.0

F $\mathfrak{1} 7$ specified the time of LO1－CLO1 output delay．

NO．	Parameter Name	Setting Range	Default
\boldsymbol{F} ‘日	Relay 1 closing delay time	$0 \sim 60.0 \mathrm{~s}$	0.0

FI 1 日 specifies the closing delay time of relay 1 normally open contact

NO．	Parameter Name	Setting Range	Default
Fヨ19	External contact input－UP response time	0．0～10．0s	0.1
Fコロ吕	External contact input－UP frequency steps	$0.0 \mathrm{~Hz} \sim$ F 97	0.1
トヨご	External contact input－DOWN response time	0．0～10．0s	0.1
トコロゴ	External contact input－DOWN frequency steps	$0.0 \mathrm{~Hz} \sim$ F昌	0.1

These functions take effect when 5 the frequency command：one is used to increase the frequency command（see input terminal function 23），and the other is used to reduce the frequency command（see input terminal function 24）．Use an input contact terminal to clear the frequency setting that accumulated by the UP／DOWN operation（see input terminal function 25）．

Frequency command decremental gradient＝ロココゴロゴコ i setting time

NO．	Parameter Name	Setting Range	Default
Fヨココ	Initial up／down frequency	$0.0 \mathrm{Hz~Fの日7}$	0.0

To adjust the frequency starting at a specified frequency other than 0.0 Hz （default initial frequency）after turning on the frequency inverter，specify the desired frequency using $\mathscr{F} \Xi \Xi$（initial up／down frequency）．

NO．	Parameter Name	Setting Range	Default
Fコミムーム	Change of the initial up／down frequency	$0 \sim 6$	0

Fコご年Set	Whether $ニ コ コ コ$ is saved when power is lost	Fコココ reset option
0	Do not save，$\vDash \Xi こ 3$ will not change every time the power is switched off or switched on．	Fヨコヨ restores to F 0 日 9 when reset with logical input function 25 （special reset）or 75 （stop reset）．
1	Save，$ニ コ コ コ ~ i s ~ s e t ~ t o ~ t h e ~ l a s t ~ r e c e i v e d ~$ frequency given when power is lost．	
2	Do not save，にコココ will not change every time the power is switched off or switched on．	Theにコロコ is restored to 0.0 Hz when reset by the logical input function 25 （dedicated reset）or 75 （shutdown reset）．
3	Save，$\vDash \Xi \Xi \Xi$ is set to the last received frequency given when power is lost．	
4	Do not save，たコエゴ will not change every time the power is switched off or switched on．	Fココ returns to its original value when it is reset by the logical input function 25 （dedicated reset）or 75 （shutdown reset）．
5	Save，エヨココ is set to the last received frequency given when power is lost．	
6	Record the initial value of $ニ コ \Xi$ ご，see note for details．	

Example：when given a frequency through a single channel UP／DOWN，the frequency is not saved for each shutdown and power outage，and the frequency is restored to the original given frequency of ミコココ．
\diamond Settings are：F 日

NO．	Parameter Name	Setting Range	Default
トコごら	Al1 input point 1 setting	0～100\％	0
トコロロ	Al1 input point 1 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	0.0
トコロ゙	Al1 input point 2 setting	0～100\％	100
Fヲロ日	Al1 input point 2 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	50.0
Fヨご	AI2 input point 1 setting	0～100\％	0
F336	AI2 input point 1 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	0.0
Fヨコ1	Al2 input point 2 setting	0～100\％	50
Fコゴコ	Al2 input point 2 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	50.0

These parameters adjust the output frequency according to the externally applied analog signal（ $0-5 \mathrm{Vdc}$ voltage， $0-10 \mathrm{Vdc}$ voltage， $4-20 \mathrm{mAdc}$ current）and the entered command for setting an external contact frequency，see figure 5．11．
 alarmed．

Figre 5．11 Relation between analog input and frequency setting

NO．	Parameter Name	Setting Range	Default
Fヨヨコ	Al1 input bias	0～255	varies by model
F334	Al1 input gain	0～255	varies by model
Fヨヨ5	AI2 input bias	0～255	varies by model
Fヨコロ	AI2 input gain	0～255	varies by model

To fine adjust the frequency command characteristics for Al1／Al2 input，use the Parameters Fヨコヨ to Fヨコロ．

Figure 5．12 Calibration of analog input
 value may cause an output frequency to be output，even though the operation frequency is 0 （zero） Hz ．

Note 2：If you want to adjust the frequency inverter so that it will output the maximum frequency at the maximum
 cause the operation frequency not to reach the maximum frequency，even though the maximum voltage and current input are applied．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F コ ラ 7}$	Low－speed signal output frequency	$0.0 \mathrm{~Hz} \mathrm{\sim FR日7}$	0.0

 used as an electromagnetic brake excitation／release signal．

This signal can also be used as an operation signal when $\sqrt[F I J]{7}$ is set to 0.0 Hz ，because an ON signal is put out if the output frequency exceeds 0.0 Hz ．

If the frequency inverter is so set，the signal will be put out through the open collector OUT（LO－CLO）and RELAY output terminals．

Figure 5．13 Description of Low－speed signal output frequency

NO．	Parameter Name	Setting Range	Default
Fヨコロ	Speed reach detection output frequency		0.0
Fヨコロ	Speed reach detection band	$0.0 \mathrm{~Hz} \sim$ F念	2.5

Figure 5．14 Description of Speed reach detection output frequency

NO．	Parameter Name	Setting Range	Default
$F 340$	Al1 input reach detection level	0～100 \％	0
F34	Al1 input reach detection band	0～20 \％	3
	 Output function 16 \qquad		

Figure 5．15 Description of Al1 input reach output

NO．	Parameter Name	Setting Range	Default
Fヨサミ	AI2 input reach detection level	0～100 \％	0
F343	AI2 input reach detection band	0～20 \％	3

Figure 5．16 Description of Al2 input reach output

NO．	Parameter Name	Setting Range	Default
Fラ44	Frequency command agreement detection range	$0.0 \mathrm{~Hz} \mathrm{\sim FO日7}$	2.5

Figure 5．17 Description Frequency command agreement detection output
If the frequency command value specified using 5 （or 5 ）almost agrees with the frequency command value from the VA and VIB terminal with an accuracy of $\pm \sqrt[\Xi]{ }-4$ ，an ON or OFF signal will be sent out．

Note：This function can be used，for example，to send out a signal indicating whether the amount of processing and the amount of feedback agree with each other when the PID function is in use．For an explanation of the PID function．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\square} \boldsymbol{\Xi}$	Logic output／pulse train output selection（LO1－CLO1）	$0 \sim 1$	0

0：Logic output 1：Pulse train output

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\Xi}$ に	Pulse train output function selection（LO1－CLO1）	$0 \sim 14$	0

Table5．4 Pulse train output function selection

5345	Description	Reference of max．value
0	Output frequency	F昌昭
1	Output current	185\％of frequency inverter rated current
2	Set frequency（Before PID）	F日昌
3	Frequency setting value（After PID）	F昌恧
4	DC voltage	150\％of frequency inverter rated voltage
5	Output voltage command value	150\％of frequency inverter rated voltage
6	Input power	185\％of frequency inverter capacity
7	Output power	185\％of frequency inverter capacity
8	Al1 Input value	$5 \mathrm{~V} / 10 \mathrm{~V} / 20 \mathrm{~mA}$
9	AI2 Input value	10V
10	Torque	250\％of motor rated torque
11	Torque current	250\％of motor rated torque current
12	Motor cumulative load factor	100\％
13	frequency inverter cumulative load factor	100\％
14	PBR（braking reactor）cumulative load factor	100\％

 to output terminals（LO1－CLO1）．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\exists} \boldsymbol{4}$ i	Maximum numbers of pulse train	$500 \sim 1600$	800

Note：The ON pulse width is maintained constant．The ON pulse width is fixed at a width that causes the duty to reach 50% at the maximum pulse number set with $F \exists 47$ ．Therefore，the duty is variable．For example，the ON
 approximately 0.3 ms when $\boldsymbol{F} \boldsymbol{5} \boldsymbol{7} \boldsymbol{7}=1600$ ．

NO．	Parameter Name	Setting Range	Default
Fコムロ	AO1 selection	$0 \sim 18$	0

The signal of internal calculated value can output from the AO1 terminal．Analog voltage output signal is default． Switching to $0-20 \mathrm{mAdc}(4-20 \mathrm{mAdc}$ ）output current can be made by setting $F=7$ to 0 ．

Table 5．5 AO selection parameters

F348	Description	maximum value
0	Output frequency	Maximum frequency F 007
1	Output current	185\％of invter rated current
2	Set frequency（betore PID）	Maximum frequency F007
3	Frequency setting value（after PID）	Maximum frequency F 007
4	DC voltage	150\％of frequency inverter rated voltage
5	Output voltage command value	150\％of frequency inverter rated voltage
6	Input power	185\％of frequency inverter rated voltage
7	Output power	185\％of frequency inverter rated voltage
8	Al1 input	（1023）
9	Al2 input	（1023）
10	Torque	250\％of frequency inverter rated torque
11	Torque current	250% of frequency inverter rated torque current
12	Motor cumulative load factor	100\％
13	frequency inverter cumulative load factor	100\％
14	brake resistor cumulative load factor	100\％
15	Serial communication data	－
16	$F \Xi 74=0 \% \sim 185 \%$ corresponds to the range of AO	－
17	F $374=0 \% \sim 185 \%$ corresponds to the range of AO	－
18	$F \Xi 74=0 \% \sim 185 \%$ corresponds to the range of AO	－

NO．	Parameter Name	Setting Range	Default
F349	Analog output voltage scaling（AO1）	1～1280	464
$F \exists 56$	Inclination characteristic of analog output	0～1	1
Fヨら1	Bias of analog output	0～100\％	0

 5．18．

Default output signals from AO1 terminals are analog voltage signals．Their standard setting range is from 0 to 10 Vdc ．Using these parameters，you can calibrate the output to $4-20 \mathrm{mAdc}$ or $20-4 \mathrm{mAdc}$ ．

Note 2：Only when $F=4 \Omega=16$ ，set value of $F=49$ displays．
Note 3：When enters $F=49$ ．operation frequency is displayed $(F \exists y=0)$ ，then press the \boldsymbol{A} key or the $\boldsymbol{\nabla}$ key to adjust $F=19$ ．If a meter is connected to AO1，the meter reading will change at this time（ $F=19$ will change too）but be careful because there will be no change in the frequency inverter＇s digital LED（monitor）indication．

NO．	Parameter Name	Setting Range	Default
F353	output frequency when AO1 $=0 \mathrm{~V}$	$0 \mathrm{~Hz} \mathrm{\sim F} 087$	0.0
F353	output frequency when AO1 $=10 \mathrm{~V}$	$0 \mathrm{~Hz} \mathrm{\sim F} 507$	0.0
		Output voltage	 Frequency settig eration frequency y settig after PID

Figure 5．19 Description of $ニ コ$ ごandたコロコsetting
 will not be effective．

NO．	Parameter Name	Setting Range	Default
Fコラム	Analog Output Voltage Bias Calibration（AO1）	$0 \sim 255$	126

Note：This parameter cannot be reset by F In＝1．

Figure 5．20 Description of $\{554$

NO．	Parameter Name	Setting Range	Default
$F コ 55$	Input terminal function for LI5	0～75	0
Fヨらロ	Input terminal function for LI6	0～75	0
$F 357$	Input terminal function for LI7	0～75	0
$F コ 5 日$	Input terminal function for LI8	0～75	0

The set method is same as F
Note1：Only valid when capacity rating is at 15 kw or above．

NO．	Parameter Name	Setting Range	Default
$F 359$	Main functions of Relay 2	0～255	0
F36念	Relay 2 auxiliary functions	0～255	0
Fヨロ	Relay 2 main and secondary functional logic relationship	0～1	0
Fヨロゴ	Relay 2 closing delay time	0～60．0s	0.0

The set method is same as $5=15$ ．

NO．	Parameter Name	Setting Range	Default
Fヨロコ	Input terminal active mode	$00 \sim$ FF	00

This parameter is 8－bit binary－hexadecimal display（ $0 \times 00 \sim 0 \mathrm{xFF}$ ），and corresponds from right to left to the setting bits for LI1～LI8，with the setting options for each：

0 ：Input terminal function active when input terminal is OFF．
1：Input terminal function inactive when input terminal is ON ．

NO．	Parameter Name	Setting Range	Default
Fヨロム	Input terminal filter time	$0 \sim 200$	0

A unit of filtering time constant 1 corresponds to 2 ms ．

NO．	Parameter Name	Setting Range	Default
Fコロ	Output terminal function B of T1	$0 \sim 69$	0

The set method is same as $f 315$ ．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\Xi}$（	Output terminal logic selection of T1	$0 \sim 1$	0

The set method is same as F I
0 ：With，\vDash IS and F IG must satisfy the request at the same time，then relay one acts．

NO．	Parameter Name	Setting Range	Default
Fヨロ $\mathbf{7}$	Terminal run detection selection at power on	$0 \sim 1$	0

0 ：Disable，when power on，frequency inverter will not supply to the motor even if the input terminal（to which forward／reverse run function is assigned）is ON，Only open the input terminal and re－close it will start the motor．

1：Enable．when power on，frequency inverter will supply to the motor on the detection of the forward／reverse run terminal is ON ．

NO．	Parameter Name	Setting Range	Default
$F \Xi \Xi \Xi$	AO2 voltage－current output selection	$0 \sim 1$	0

0 ：Current signal output．
1：Voltage signal output．

NO．	Parameter Name	Setting Range	Default
F369	AO2 selection	0～16	0
F376	Analog output current scaling（AO2）	1～1280	375
Fヨ7i	Inclination characteristic of analog output	0～1	1
トコフコ	Bias of analog output	0～100\％	0

 Fヨ5日 and Fヨ5

For detailed description of $F=79$ ，see parameter $F=18$ ．
Note：Parameter $F=7$ cannot be reset by

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{7} \Xi$	Analog Output current Bias Calibration（AO2）	$0 \sim 255$	107
$\boldsymbol{F} \boldsymbol{7} 4$	Percentage of AO monitored values	$0 \sim 250 \%$	0

1）AO1－0 $\sim 10 \mathrm{~V}$ calibration is as follows：

 actual output voltage 10 V ．

After calibration is completed，$F=4$ modifies back to the internal functional variables that need to be monitored．
2）Ao1－4 $\sim 20 \mathrm{~mA}$ calibration is as follows：
 make the actual output current is 4 mA . Then set $F \Xi 74=100 \% / 150 \% / 185 \%$ and adjust the value of $F 4 \exists$ iso that the actual output current is 20 mA .
After calibration is completed, $F=4 B$ modifies back to the internal functional variables that need to be monitored.
3) AO2-0 $\sim 10 \mathrm{~V}$ calibration is as follows:
$F \exists 5 日=1, F \exists 59=18 / 17 / 16$ Inverter stop state, set $F \exists 74=1 \%$, adjust the value of $F 4 \exists 4$, make the actual output voltage is 0.1 V . Then set $F \Xi 74=100 \% / 150 \% / 185 \%$ and adjust the value of $F 4 \Xi \exists$ to make the actual output voltage 10 V .

After calibration is completed, $F \Xi 59$ modifies back to the internal functional variables that need to be monitored.
4) AO2-4 ~ 20mA calibration is as follows:
 make the actual output current is 4 mA . Then set $F \exists 7 \boldsymbol{\zeta}=100 \% / 150 \% / 185 \%$ and adjust the value of $F \Xi 70$ so that the actual output current is 20 mA .
After calibration is completed, $F \Xi 59$ modifies back to the internal functional variables that need to be monitored.

NO.	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{1 5}$	Output terminal logic selection of LO2-CLO2	$0 \sim 1$	0

0: $\vDash \Xi 7 \exists$ AND $\vDash \Xi 74$. The logical product (AND) of $\vDash \Xi 7 \Xi$ and $\vDash \Xi 74$ will be output to LO2-CLO2.
1: $\vDash \exists 7 \exists$ OR $\vDash \Xi 74$. The logical sum (OR) of $\vDash \Xi 7 \Xi$ and $F \Xi 74$ will be output to LO2-CLO2.

NO.	Parameter Name	Setting Range	Default
F $3 \boldsymbol{7 5}$	LO2-CLO2 output delay	$0 \sim 60.0 \mathrm{~s}$	0.0

$F \Xi 75$ specified the time of LO2-CLO2 output delay.

6.5 Fault protection parameter group

NO.	Parameter Name	Setting Range	Default
FHIG	Retry selection (Selecting the number of times)	$0 \sim 10$	0

0 : disabled
1~10 times.
This parameter resets the frequency inverter automatically when the frequency inverter gives an alarm. During the retry mode, the motor speed search function operated automatically as required and thus allows smooth motor restarting.

Protective operation detection relay signals (T1A-T1B-T1C or T2A-T2B-T2C terminal signals) are not sent during use of the retry function.

To allow a signal to be sent to the protective action detection relay (TxA, B and C terminals) even during the retry process, assign the output terminal function 36 or 37 to Fヨ 15.
 operate after the virtual cooling time and retry time.
In the event of tripping caused by an overvoltage (I-it), the retry function will not be activated until the voltage in the DC section comes down to a normal level.

In the event of tripping caused by overheating（E－ミ゙ temperature in the frequency inverter comes down low enough for it to restart operation．

Keep in mind that when 5 is set to 1 （trip retained），the retry function will not be performed，regardless of the setting of $F=18$.

During retrying，the blinking display will alternate between -9 and the monitor display specified by status monitor display mode selection parameter FEIG．

The number of retries will be cleared if the frequency inverter is not tripped for the specified period of time after a successful retry．＂A successful retry＂means that the frequency inverter output frequency reaches the command frequency without causing the frequency inverter to re－trip．

Retry available fault including overcurrent $(\boldsymbol{E}-\boldsymbol{I} \boldsymbol{I}$ $\operatorname{load}(\boldsymbol{\Xi}-\boldsymbol{\Xi} \boldsymbol{\Xi}, \boldsymbol{\Xi}-\Xi)$ ，and momentary power failure．

The retry function will be canceled at once if tripping is caused by an unusual event other than the retry available fault．This function will also be canceled if retrying is not successful within the specified number of times．
＂Function be canceled＂means frequency inverter will be tripped and stop supply to motor．
The interval time is proportional relation with retry times．The first retry is 1 sec ，the second retry is 2 sec and the $10^{\text {th }}$ retry is 10 sec ．

retry time	1	2	3	4	5	6	7	8	9	10
success time	1 s	2 s	3 s	4 s	5 s	6 s	7 s	8 s	9 s	10 s

Before all fault reset attempts are finished：
The output terminal to which output terminal function 40 （or 41 ）is assigned will not indicate the fault．
The output terminal to which output terminal function 38 （or 39）is assigned can be used to indicate the appearance of automatically retry available fault．

The output terminal to which output terminal function 30 （or 31 ）is assigned can be used to indicate any type of the fault in the frequency inverter even if during the the period of retry．

NO．	Parameter Name	Setting Range	Default
F4星	Electronic－thermal protection characteristic selection	0～7	0

Table 5．6 Description of 1

F4昂	motor type	overload tripped enable	overload stall
0	Standard motor	YES	NO
1		YES	YES
2		NO	NO
3		NO	YES
4	Special motor （forced cooling）	YES	NO
5		YES	YES
6		NO	NO
7		NO	YES

Overload stall：This is an optimum function for equipment such as fans，pumps and blowers with variable torque characteristics that the load current decreases as the operating speed decreases．When the frequency inverter detects an overload，this function automatically lowers the output frequency before the motor overload trip E－ Ξi is activated．This function operates a motor at frequencies that allow the load current to keep its balance so that the frequency inverter can continue operation without being tripped．

Note：Do not use the overload stall function with loads having constant torque characteristics（such as conveyor belts in which load current is fixed with no relation to speed）．

NO．	Parameter Name	Setting Range	Default
トリス	Motor 150\％－overload time limit	$10 \sim 2400 \mathrm{~s}$	300

 Ξ コ）within a range of 10 to 2400 seconds．

NO．	Parameter Name	Setting Range	Default
F4可	Emergency stop selection	0～2	0
F484	emergency braking time	0～20．0 s	1.0

0：Free stop 1：Ramp stop
2：Emergency DC braking
These parameters allow you to specify how to stop operation using an external control device when an external trip occurs．When operation stopped，the trip $E-4$ displayed．When setting $54=2$（emergency DC braking），set also F5日（DC braking rate）and f404（emergency braking time）．Assigning the trip stop function （input terminal function 11 or 27 ）to the contact input terminal．

Note 1：Emergency stopping via the specified terminal is possible，even during panel operation．
Note 2）If DC braking is not needed to bring the motor to a stop under normal conditions，although 54 to 2 （emergency DC braking），set the DC braking starting frequency（F曰日）at 0.0 Hz 。

NO．	Parameter Name	Setting Range	Default
5			

0：Disabled，No tripping．
1：Enabled，Phase failure detection is enabled during operation．
This parameter detects frequency inverter input Phase failure．If the abnormal voltage status of main circuit capacitor persists for few minutes or more，the tripping function will be activated．

Therefore，input phase failures cannot always be detected．A trip information $E-4 ;$ will be displayed．If the power capacity is larger than the frequency inverter capacity（more than 200kVA or more than 10 times）， detection errors may occur．If this actually happens，install an AC or DC reactor．

Note1：Setting $545=0$（input phase failure detection：disabled）may result in a breakage of the capacitor in the frequency inverter main circuit if operation is continued under a heavy load in spite of the occurrence of an input phase failure．

Note2：Parameter F45 is invalid for single－phase input model．

NO．	Parameter Name	Setting Range	Default
F4に	Output phase failure detection mode selection	$0 \sim 5$	0

0: Disabled.
1: At start-up (Only one time after power is turned on).
2: At start-up (each time).
3: During operation.
4: At start-up and during operation.
5: Detection of cutoff on output side.
$F 45=0$: No tripping.
$F 45=1$: With the power on, the phase failure detection is enabled only at the start of the first operation. The frequency inverter will trip if the Phase failure status persists for one second or more.
$F-5 \mathrm{G}=2$: The frequency inverter checks for output phase failures each time it starts operation. The frequency inverter will trip if the Phase failure status persists for one second or more.

F4に=3: The frequency inverter checks for output phase failures during operation. The frequency inverter will trip if the Phase failure status persists for one second or more.
$F-5=4$: The frequency inverter checks for output phase failures at the start of and during operation. The frequency inverter will trip if the Phase failure status persists for one second or more.
$F-5 G=5$: If it detects an all-phase failure, it will restart on completion of reconnection. The frequency inverter does not check for output phase failures when restarting after a momentary power failure.

Note1: A check for output phase failures is made during auto-tuning, regardless of the setting of this parameter.
Note2: Set $F 45=5$ to open the motor-frequency inverter connection by switching commercial power operation to frequency inverter operation. Detection errors may occur for special motors such as high-speed motors.

NO.	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\square} \mathbf{7}$	Small current trip/alarm selection	$0 \sim 1$	0

0: Alarm only. A small current alarm can be put out by setting the output terminal function selection parameter.
1: Tripping. The frequency inverter will trip if a current below the current set with $f 408$ flows for the period of time

NO.	Parameter Name	Setting Range	Default
F498	undercurrent detection current	0~100\%	0.00
F498	under current detection current hysteresis	1~20\%	10
F416	undercurrent detection time	0~255s	0

If a current smaller than the F is selected (see F4 figure 5.21 .

Figure 5.21 Description of small current
Note: The 100% standard value of 408 and 54 is the rated output current indicated on the motor nameplate.

NO.	Parameter Name	Setting Range	Default
FHif	Over torque/over current indicator selection	$0 \sim 5$	0

0: Over-torque alarm: (70\%)

- When the torque current reaches 100% of F4 relay operation of 32 ;
- When the above relay (function is 48 or 32) operates, the panel will not operate and the converter will not stop.

1: Over-torque fault

- When the torque current reaches 70% of $\vDash-\boldsymbol{\prime} \boldsymbol{I}$, the relay with function set as 48 will immediately operate, but the panel will not operate, and the converter will not stop;
 relay action of 32 and the converter reports the fault $E-\overline{7}$;

2. Over-torque alarm: (100\%)

- When the torque current reaches 100% of $\mathscr{F} \boldsymbol{H}$, the relay with function set as 48 will immediately operate;
 relay operation of 32 ;
- When the above relay (function is 48 or 32) operates, the panel will not operate and the converter will not stop.

3: Over-current alarm: (70\%)

- When the output current reaches 70% of \vDash -
- When the output current reaches 100% of $F 412$ and the duration reaches $F 4$ 4 4 , the function is set as relay operation of 32 ;
- When the above relay (function is 48 or 32) operates, the panel will not operate and the converter will not stop.

4: Overcurrent fault

 the panel will not operate, and the inverter will not stop;
 relay action of 32 and the frequency converter reports the fault $E-7$;

5: Overcurrent alarm: (100\%)

- When the output current reaches 100% of $\boldsymbol{-} \boldsymbol{-} \boldsymbol{I}$, the relay with function set as 48 will immediately operate;
 relay operation of 32 ；
－When the above relay（function is 48 or 32 ）operates，the panel will not operate and the converter will not stop．

NO．	Working conditions		Operating conditions and operation of the converter
	Torque current	Output current	
1	F4：$:=0$	F4：	No action on the panel，the inverter does not stop．
2	F4：	F4：$:=4$	Torque／output current reached $F \dot{\xi} ; 2$ ，and the duration reached 54 it the panel reported failure $E-7$ ，the frequency converter stopped．
3	F4：	F4：	No action on the panel，the inverter does not stop．

NO．	Working conditions		Working conditions	
	Torque current	Torque current	Relay（Function 48）	Relay（Function 32）
1	FH：	F－	When the torque／output current reaches 70\％of F－I I ，the relay operates immediately．	The torque／output current and the duration reaches F -14 ．The relay operates．
2	F4it＝1	F－1		
3	F－	F－i i $=5$	When the torque／output current reaches 100% of Fージコ，the relay operates immediately．	

NO．	Parameter Name	Setting Range	Default
F－19	Over－torque detection level	0～250\％	130
F－4 3	Over－torque detection level hysteresis	0～100\％	10
5414	Over－torque detection time	0．0～10．0s	0.5

Use the \mathscr{H}＇ ；parameter to trip the frequency inverter or to output the alarm if a torque currrent exceeding the

a）Over－torque detection alarm output

b) Over-torque detection trip output

Figure 5.22 Description of Over-torque detection
Note 1: Output over-torque detection alarm by assigning the output terminal function 48 to T1 (T2, LO1-CLO1 or LO2-CLO2). Output over-torque detection trip by assigning the output terminal function 32 to T1 (T2, LO1-CLO1 or LO2-CLO2).
 nameplate.

NO.	Parameter Name	Setting Range	Default
FH $\boldsymbol{\text { GY }}$	Overvoltage limit operation	$0 \sim 3$	2

0: Enabled. When the frequency inverter detects the upcoming overvoltage fault, it takes one of the following measures to avoid overvoltage: to increase deceleration time, to keep motor speed or raise motor speed.

1: Disabled
2: Enabled (Quick deceleration). The frequency inverter will increase the voltage to the motor (overexcitation control) to increase the amount of energy consumed by the motor when the voltage reaches the overvoltage protection level, and therefore the motor can be decelerated more quickly than normal deceleration.

3: Enabled (Dynamic quick deceleration). the frequency inverter will increase the voltage to the motor(overexcitation control) to increase the amount of energy consumed by the motor as soon as the motor begins to slow down, and therefore the motor can be decelerated still more quickly than quick deceleration.

Note: When motor speed falls, the frequency inverter absorbs regenerative energy from the load and the motor. This often brings DC bus overvoltage fault. If $F \rightarrow$ IS is set to 3, this portion of engery will not be fed back to the frequency inverter, but converted to heat dissipation into the motor. In this case the motor intensely gives out heat.

NO.	Parameter Name	Setting Range	Default
FH K	Overvoltage limit operation level	$100 \sim 150 \%$	130

F-4 5 specifies the Overvoltage limit operation level.

Figure5．23 Description of overvoltage limit operation level

NO．	Parameter Name	Setting Range	Default
Fムi	Undervoltage trip／alarm selection	$0 \sim 2$	0

0：Alarm only（detection level below 60\％），The frequency inverter is stopped．However，it is not tripped．
1：Tripping（detection level below 60\％）．frequency inverter is stopped．It is also tripped
2：Alarm only（detection level below 50\％，input reactor needed）

NO．	Parameter Name	Setting Range	Default
FHig	Instantaneous power failure coast stop selection	$0 \sim 2$	0

0 ：disabled
1：factory reserved
2：Coast stop．
Coast stop in the event of momentary power failure：If a momentary power failure occurs during operation，the frequency inverter coast stops forcibly．When operation is stopped，the message＂G－G＂is displayed （alternately）on the keypad．After the forced coast stop，the frequency inverter remains static until you put off the operation command momentarily．

NO．	Parameter Name	Setting Range	Default
FH $\boldsymbol{\text { G }}$	Forced fire－speed control function	$0 \sim 1$	0

0：Disabled．
1：Enabled．
To enable forced speed mode，set $F 4$ ig to 1 ，and allocate input terminal function 33 to a input contact terminal． If $F 419$ is set to 1 and intput terminal function 33 is ON，the frequency inverter will run at the frequency set by F7ジロ．At this time，

Put OFF the input terminal function 33 will not stop the frequency inverter ．
The following frequency inverter trip will not make it stop，but automatic restart is performed．：E－it，E－G4，

When the frequency inverter is under local running mode，the frequency inverter can only be stopped by powering off．

Note 1：The motor running direction is forward and the frequency inverter runs according to the frequency command of the setpoint of $F=$

Note 2：The following operations will not make the frequency inverter or motor stop：disabling function 33，press STOP key or light trip occurs．

NO．	Parameter Name	Setting Range	Default
ーム゙ー	Detection of output short－circuit during start－up	$0 \sim 3$	0

0 ：Each time（standard pulse）
1：Only one time after power is turned on（standard pulse）
2：Each time（short－time pulse）
3：Only one time after power is turned on（short－time pulse）
Note 1：when the phase resistor of the motor is small（motor capacity is large，short－time pulse is recommended．

NO．	Parameter Name	Setting Range	Default
Fムゴ	Motor electric－thermal protection retention selection	$0 \sim 1$	0

0：disabled．If the frequency inverter is turned on and off，its motor thermal state memory（used for overload computation）will be cleared．

1：Enabled．Even if the frequency inverter is turned off，the motor thermal state memory of the frequency inverter is still retained．If motor overload fault $\boxed{\Xi}$－occurs in the frequency inverter，the motor can be restarted only after a period of cooling time（computed by the frequency inverter）．

NO．	Parameter Name	Setting Range	Default
Fムエコ	Al1 input loss	$0 \sim 100 \%$	0

0 ：Disabled．The frequency inverter will not monitor the signal state on the analog input terminal AI1．
1～100：Fault detection level．If signal on Al1 drops below the selected fault detection level and this low signal level lasts 300 ms or more，fault occurs in the inverer．The keyboard panel will display fault code $\Xi-\exists \mathrm{B}$ ．

NO．	Parameter Name	Setting Range	Default
ームココ	Activation of the frequency inverter during 4－20mA signal loss	$0 \sim 4$	0

0 ：No measures．
1：Coast stop．
2：switch to Fallback speed．To switch to fallback speedだエ゙ー．The duration is as long as the fault life time and the running command is still valid．

3：Speed maintaining．To maintain the speed at the time when fault occurs in the frequency inverter ．The duration is as long as the fault life time and the running command is still valid．

4：Slowdown stop．

NO．	Parameter Name	Setting Range	Default
F－ゴ	Fallback speed	$0.0 \mathrm{~Hz} \sim$ F．06	0.0

Seeケサココ＝2

NO．	Parameter Name	Setting Range	Default
トムエ゙	PTC thermal selection	$0 \sim 2$	0

0：Disabled

1：Enabled（trip mode），If the PTC probe triggers the signal of fault，the frequency inverter enters into fault state and displays＂ \mathbf{E}－ご＂．

2：Enabled（alarm mode），if the PTC probe triggers the signal of fault，the frequency inverter will trigger fault signal and continues running．
 or 2 can convert control terminal AI2 to a PTC motor thermal probe input．The wiring is shown in the following figure．

Figure 5．24 PTC wiring example
Note：PTC resistance must be connected in from Al 2 terminal．One $3.3 \mathrm{k}-1 / 4 \mathrm{~W}$ resistance must be externally connected between 5 V and Al 2 ．

NO．	Parameter Name	Setting Range	Default
Fムエロ	Resistor value for PTC detection	$100 \sim 9999 \Omega$	3000

NO．	Parameter Name	Setting Range	Default
Fルコロ	Cumulative operation time alarm setting	$0.0 \sim 999.9$	610.0

This parameter allows you to set the frequency inverter so that it will put out an alarm signal（Output terminal function $=50$ ）after a lapse of the cumulative operation time set with $\boldsymbol{5} \boldsymbol{- 4}$ ．

Note： $0.1=10 \mathrm{~h}$ ．

NO．	Parameter Name	Setting Range	Default
Fーコロ	frequency inverter trip retention selection	$0 \sim 1$	0

0 ：Clearing．The fault occurs and after the frequency inverter is turned off and on，
If the fault cause has been eliminated，the inveter will be reset and can be started．
The information of just eliminated fault will be transmitted to the fault history record．
If the fault cause has not been eliminated yet，the fault will be displayed again and the running information related to the fault will be transmitted to the fault history record．

The information of the 4th from last fault will be eliminated from the fault history record．
1：Maintaining．The fault occurs and after the frequency inverter is turned off and on，

If the fault cause has been eliminated，the inveter will be reset and can be started．The information of just eliminated fault will be transmitted to the fault history record．

If the fault cause has not been eliminated yet，original fault codes and all running data can be inquired as current fault under monitoring mode．

The information of the 4th from last fault will be reserved in the fault history record．
Automatic fault reset will be disabled．

NO．	Parameter Name	Setting Range	Default
FHゴR	Heat sink temperature reaches the alarm value	$0 \sim 100^{\circ} \mathrm{C}$	60

When the heat sink temperature reaches the setting value of 543 ，the frequency inverter could output one alarm signal via logic output or relay output．Please refer to logic output function 66.

NO．	Parameter Name	Setting Range	Default
Fムヨi	Analog output current scaling（AO1）	$1 \sim 1280$	377

NO．	Parameter Name	Setting Range	Default
Fムゴコ	Analog Output current Bias Calibration（AO1）	$0 \sim 255$	108

NO．	Parameter Name	Setting Range	Default
Fムゴコ	Analog output voltage scaling（AO2）	$1 \sim 1280$	463

NO．	Parameter Name	Setting Range	Default
FHジー	Analog output voltage bias calibration（AO2）	$0 \sim 255$	126

6．6 Fault protection parameter group

NO．	Parameter Name	Setting Range	Default
Fת日 日	Auto－restart control selection	$0 \sim 4$	0

0：Disabled
1：At auto－restart after momentary stop
2：When turning standby（input terminal function $=1$ ）on or off
3：At auto－restart or when turning standby（input terminal function $=1$ ）on or off
4：At start－up
5～7：factory reserved
8：First DC braking and then start．DC braking current level and braking time follow F5

The F5日 parameter detects the rotating speed and rotational direction of the motor during coasting ing the event of momentary power failure，and then after power has been restored，restarts the motor smoothly（motor speed search function）．

This parameter also allows commercial power operation to be switched to frequency inverter operation without stopping the motor．During operation，＂ speed search function operated automatically as required and thus allows smooth motor restarting．

At restart，it takes about 300 ms for the frequency inverter to check to see the number of revolutions of the motor． For this reason，the start－up takes more time than usual．Use this function when operating a system with one motor connected to one frequency inverter．This function may not operate properly in a system configuration with multiple motors connected to one frequency inverter．

Setting F5in＝1，（3）：This function operates after power has been restored following detection of an undervoltage by the main circuits and control power．

Setting F5in＝2，（3）：This function operates after the standby terminal（（input terminal function＝1）connection has been opened first and then connected again．

Setting F 5 名 $=4$ ，a motor speed search is performed each time operation is started．This function is useful especially when the motor is not operated by the frequency inverter but it is running because of external force．

Setting F crane or hoist．Such machines may have its load moved downward during the above waiting time from input of the operation starting command to the restart of the motor．

NO．	Parameter Name	Setting Range	Default
F5穴：	auto－stop time limit for lower－limit frequency operation	0．0～600．0s	0.1

0：disabled（0．0）．None．
1：Enabled（0．1～600．0s）．If operation is carried out continuously at a frequency below the lower－limit frequency （ automatically slow down the motor to a stop．At that time，＂ $\boldsymbol{B}-7$＂is displayed（alternately）on the keypad．This

Figure 5．25 Description of sleep mode
Note：This function is enabled even at the start of operation and during switching between forward and reverse run．

NO．	Parameter Name	Setting Range	Default
Fロロコ	Bumpless operation selection	$0 \sim 1$	1

0：disabled．
1：enabled．

When switching from remote mode to local mode using Firi，the status of start and stop，and operating frequency at remote mode are moved to local mode．By contraries，when switching from local mode to remote mode，they are not moved to remote mode．

$F 502$ setting	switching between remote mode and local mode	description
0	Remote \rightarrow Local	motor stops
	Local \rightarrow Remote	run immediately with run command and frequency setting under remote control．
1	Remote \rightarrow Local	motor runs continuesly with original run command and frequency setting under remote control．
	Local \rightarrow Remote	run immediately with run command and frequency setting under remote control．

E．g，when $F \boldsymbol{F} \quad \mathrm{i}=1$ ，the frequency inverter runs at 20 Hz of frequency setting under remote control mode．If switched to local mode（make $\mathfrak{F} \boldsymbol{i}$ I $\bar{\prime}=0$ ），the frequency inverter continues to run at 20 Hz under local control mode．

NO．	Parameter Name	Setting Range	Default
Fロ日コ	Starting frequency setting	$0.5 \sim 10.0 \mathrm{~Hz}$	0.5

The frequency set with 5 delay in response of starting torque according to the acceleration／deceleration time is probably affecting operation． Setting the starting frequency to a value from 0.5 to 3 Hz is recommended（F5 i 5 is usually set to the motor rated slip frequency ）．The occurrence of an overcurrent can be suppressed by setting this frequency below the rated slippage of the motor．

Rated slip frequency can be calculated with the parameters written on the nameplate of the motor：
$f_{s}=f_{0}-\frac{n_{N} * P}{60}$ ．
P＿－pole pairs．$\quad n_{N} —$ motor rated speed（rpm）．
f_{0} ——base frequency $(\mathrm{Hz}) . \quad f_{s}$ —motor rated slip frequency (Hz) ．

NO．	Parameter Name	Setting Range	Default
F584	Operation starting frequency	$0.0 \mathrm{~Hz} \sim$ F昌㫛	0.0
F5日 5	Operation starting frequency hysteresis	$0.0 \mathrm{~Hz} \sim$ F昌昌	0.0

The Run／stop of operation can be controlled simply with these two parameters．The frequency inverter begins accelerating after the frequency setting signal has reached point B ．Deceleration ends when the frequency setting signal decreases below point A ．

Figure 5.26 Description of Operation starting frequency

NO.	Parameter Name	Setting Range	Default
F506	DC braking starting frequency	$0.0 \mathrm{~Hz} \mathrm{\sim F} 067$	0.0
F507	DC braking current	varies by model	varies by model
F50日	DC braking time	0.0~20.0 s	1.0

A large braking torque can be obtained by applying a direct current to the motor. These parameters set the direct current to be applied to the motor, the application time and the starting frequency. During DC braking, 9 - 7 displays.

DC braking can be activated by two methods as follows:
Auto matically DC braking: when operation frequency decreases below $5 \boxed{5} 5, \mathrm{DC}$ braking is activated. Input terminal signal: when the input terminal function 13 is ON, DC braking is activated.

Figure 5.27 DC braking sequence
Note1: During DC braking, the overload protection sensitivity of the frequency inverter increases. The DC braking current may be adjusted automatically to prevent tripping.

Note 2: During DC braking, the carrier frequency is 6 kHz or less irrespective of the setting of parameter Fig (PWM carrier frequency).

NO.	Parameter Name	Setting Range	Default
Fs $\boldsymbol{\square}$	Acceleration/deceleration 1 pattern	$0 \sim 3$	0

0: Linear, Linear, applied to most occasions.

1: S-type curve 1, for the need to minimize the slope time while minimizing the impact of the occasion.
2: S-curve 2, can be used for high-speed main Main axis where the acceleration needs to be reduced when the motor is running above its rated operating frequency (weak magnetic field, output electromagnetic torque decreases).

3: Elevator acceleration / deceleration curve.

Figure 5.28 S-pattern acceleration/deceleration 1

Figure 5.29 S-pattern acceleration/deceleration 2

LI1	LI4	LI3	LI2	Reference speed（frequency）selected	Acceleration／deceler ation times
OFF	OFF	OFF	OFF	Speed 00.00 Hz	Fத1日
ON	OFF	OFF	OFF	Speed 1 （Run speed defined）defined by 518	F5：
ON	OFF	OFF	ON	Speed 2 （Run speed defined）defined by Fi ib	F．6） 6
ON	OFF	ON	OFF	Speed 3 （Maintenance speed）defined by F7：	
ON	OFF	ON	ON	Speed 4 （Creep speed）defined by F7 ig	F日 1
ON	ON	OFF	OFF	Speed 5 （Run speed defined）defined by F7 19	FG1日
ON	ON	OFF	ON	Speed 6 （Run speed defined）defined by $F 7$	F日 68
ON	ON	ON	OFF	Speed 7 （Maintenance speed）defined by Fヲミi	
ON	ON	ON	ON	Speed 8 （Creep speed）defined by	Firi

Figure 5．30 Speed selection table

Figure 5．31 Elevator acceleration／deceleration curve

NO．	Parameter Name	Setting Range	Default
Fsif	Acceleration／deceleration 2 pattern	0～2	0
FG1E	Acceleration／deceleration 3 pattern	0～2	0

NO．	Parameter Name	Setting Range	Default
F5：	Acceleration／deceleration 1 and 2 switching frequency	$0.0 \mathrm{~Hz} \sim$ F 98	0.0
F5 4	Acceleration／deceleration 2 and 3 switching frequency	$0.0 \mathrm{~Hz} \sim$ F昌昌	0.0

Figure 5．32 Acc／Dec parameters switching automatically
When set $F 5$ ；$\exists \neq 0$ and the frequency inverter output frequency increases above（or decreases below） $F 5: 3$ setting，$F 5: B$（or $F 5 ; 9$ ）is effective．
Note：
（A）and（F）according to Acc／Dec 1；
（B）and（E）according to Acc／Dec 2；
（C）and（D）according to Acc／Dec 3.

NO．	Parameter Name	Setting Range	Default
リத	Selecting an acceleration／deceleration pattern	$1 \sim 3$	1

Figure 5．33 Acc／Dec parameters description

NO．	Parameter Name	Setting Range	Default
FS15	S－pattern lower－limit adjustment amount	0～50 \％	10
FS 17	S－pattern upper－limit adjustment amount	0～50 \％	10

$F 5 i 5$ and $F 5 ; 7$ are used to adjust the relative proportion of the upper arc and lower arc of the S curve against the complete acceleration／deceleration time．

NO．	Parameter Name	Setting Range	Default
FS 6	Acceleration time 2	0．0～3200s	20.0
F5 9	Deceleration time 2	0．0～3200s	20.0
FSこ日	Acceleration time 3	0．0～3200s	20.0
Fらこ！	Deceleration time 3	0．0～3200s	20.0

Three acceleration times and three deceleration times can be specified individually．A method of selection or switching can be selected from among the following：

1）Selection by means of parameters，see Fエ I

3）Switching by means of terminals，see input terminal function 5,64 ．

Figure 5．34 Using input contact terminal select Acc／Dec
Tabel 5．8 Using input contact terminal select Acc／Dec

input terminal function 64	input terminal function 5	Acc／Dec selection
0	0	Acc／Dec1
0	1	Acc／Dec 2
1	0	Acc／Dec 3
1	1	Acc／Dec 3

Tabel 5．9 Using input contact terminal and switching frequency select Acc／Dec

Frequency command	Input terminal function 5	Input terminal function 64	Acc／Dec selection
Fc $=$－¢ 3	0	0	ACC1
	1	0	ACC2
	0	1	ACC1
	1	1	ACC2
	0	0	ACC2
	1	0	ACC1
	0	1	ACC2
	1	1	ACC1
F5 64＜Fc	0	0	ACC3
	1	0	ACC3
	0	1	ACC3
	1	1	ACC3

Note：
（A）and（F）according to Acc／Dec 1；
（B）and（E）according to Acc／Dec 2；
（C）and（D）according to Acc／Dec 3.

NO．	Parameter Name	Setting Range	Default
Fヨココ	Reverse－run prohibition	$0 \sim 2$	0

0：Forward／reverse run permitted．
1：Reverse run prohibited．
2：Forward run prohibited．

NO．	Parameter Name	Setting Range	Default
Fエココ	stop pattern	$0 \sim 3$	2

0：Ramp stops．If F
1：The keyboard stops freely．When the command channel is the keyboard panel，the motor stops freely．
2：2 Free stop is controlled by wire 2 ．When the operation command is controlled by wire 2 at terminal 2 ，the motor will be stopped freely．

3：Free stop of wire control；free stop of motor when the operation command is terminal 3 wire control．
Note 1：No matter whether the DC braking parameters are valid or not，the inverter cannot perform DC braking during free stop．

Note 2：As long as the setting of $\mathscr{F} \Xi$ is not free stop in the corresponding mode，the frequency converter will slow down and stop．

NO．	Parameter Name	Setting Range	Default
\boldsymbol{F} に日	Positive and negative operation is preferred	$0 \sim 4$	1

0：When positive and negative commands are given at the same time，the converter will run in reverse
1：The inverter stops when positive and negative commands are given at the same time

2：When the positive and negative commands are given at the same time，the inverter runs according to the commands given first．

3：When the positive and negative commands are given at the same time，the converter will run according to the commands given after both．

4：At the same time，the inverter runs as the forward and reverse rotation command．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{\boxed { \Xi ゙ ア }}$	regenerative braking selection	$0 \sim 2$	2

0：Disabled
1：Enabled（with resistor overload protection）
2：Enabled（without resistor overload protection）
Connect an external braking resistor in the following cases to enable dynamic braking function：
1）When decelerating the motor abruptly or if overvoltage tripping（ $\mathcal{E}-i \boldsymbol{i}$ ）occurs during deceleration stop．
2）When a continuous regenerative status occurs during downward movement of a lift or the winding－out operation of a tension control machine．

3）When the load fluctuates and a continuous regenerative status results even during constant speed operation of a machine such as a press．

Note 1：To connect a dynamic braking resistor，set the overvoltage limit operation parameter $\boldsymbol{F} \boldsymbol{4}$ ： 1（Disabled）．

NO．	Parameter Name	Setting Range	Default
Fらこ日	regenerative braking resistance	1．0～1000．0 Ω	20.0
トヨご	regenerative braking resistor capacity	0．01～30．0 kw	0.12

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{\Omega}$	Positive and negative dead zone time	$0.0 \sim 25.0 \mathrm{~s}$	0

 if you first clear the run command and then change the direction of the run．

Note 1：When frequency is set by Al1 and Fフラ $-7=1$（curve 2）：
（1）After the frequency converter receives the stop command and stops，if the given frequency is 0 Hz ，start first and then adjust the output frequency．No matter the given frequency is positive or reverse，start directly regardless of dead zone time；
（2）The direction of 0 Hz is consistent forward，that is，before is positive rotation，and 0 Hz is positive rotation； Before is reversal， 0 Hz is reversal．Therefore，in the running process，after the given frequency changes to 0 Hz and the motor stops rotating，if the frequency in the same direction is given again before the shutdown，the dead zone time is ignored and the motor starts directly．However，the final effect may be affected by the fluctuation of a given voltage when a potentiometer is used for a given frequency．
Note 2：F5コロin is also valid except when Al1 sets the frequency and $\vDash 754=1$（curve 2）．But there are two caveats：
 $F \Xi=3$ are set，the inverted inching is triggered by forward running of LI1，and then LI2 is closed at the same
time．At this time，the dead zone setting time of 595 is invalid，and there will be no pause at 0 Hz when switching forward and backward．
（2）The direction of OHz is not kept consistent forward．

0：HMI RS485 communication port is the standard MODBUS protocol
1：HMI RS485 communication port is DisplayModBus protocol（select this protocol when using Chinese panel or Display）

NO．	Parameter Name	Setting Range	Default
Fதココ	Acceleration／deceleration S－curve lower limit 3	$0 \sim 50 \%$	10
Fதココ	Acceleration／deceleration S－curve upper limit 3	$0 \sim 50 \%$	10

 upper and lower arcs of the S－curve to the entire acceleration／deceleration time．

6．7 Keyboard panel parameter group

NO．	Parameter Name	Setting Range	Default
F日G	Prohibition of panel reset operation	$0 \sim 1$	0

0：Permitted

1：Prohibited

This parameter can prohibited／permitted the reset operation by＜STOP＞key．

NO．	Parameter Name	Setting Range	Default
F日G ；	Switching between remote control and Local control	$0 \sim 2$	1

0：Local control mode，Start and stop，and frequency setting are effective only by keypad keys．Fig～ト日 is invalid．

1：remote control mode，Start and stop，and frequency setting follow the selection of

 invalid，JOG key action shall prevail，see parameter F7 日 for details．

NO．	Parameter Name	Setting Range	Default
F曰日に	Password check／input	$0 \sim 9999$	0

1．When F T can be modified；

2．When $\mathcal{F} \boldsymbol{7}$ I $=0$ ，the password protection function takes effect：
（1）If $F \boxed{\square} \boldsymbol{\square}$ on can be modified；
 automatically reset to 0 ，and the protection parameter was modified．If you want to continue modifying the parameters，you need to enter the password again via $F 50 \mathrm{O}$ ．

 effective and will not reset automatically．

NO．	Parameter Name	Setting Range	Default
Fロ日	Current／voltage display mode	$0 \sim 1$	1

$0: \%$ ，display in percentage terms．
1：A（ampere）$/ \mathrm{V}$（volt），display in amperes／volts．
These parameters are used to change the unit of monitor display．Like current monitor and Voltage monitor display．（\％$\Leftrightarrow \mathrm{A}$（ampere）$/ \mathrm{V}$（volt））

Note1：$F \underset{\square}{9}$ converts the following parameter settings：Motor electronic－thermal protection level 1 and 2
 detection current（ $F 40 \mathrm{O}$ ）．

Note2：Base frequency voltage 1 and $2(F \in \mathbb{F}, F(0)$ ）always displayed in the unit of V ．

NO．	Parameter Name	Setting Range	Default
FG -4	Frequency free unit magnification	$0.00 \sim 200.0$	0.00

0．00：Free unit display disabled（display of frequency）．

e．g．，output frequency $=50 \mathrm{~Hz}$ ，if $F 5 \square=30.0$ ，Value displayed on the panel is 1500 ．
Note：This parameter displays the frequency inverter output frequency as the value obtained by multiplying it by a positive number．This does not mean that the actual motor speed or line speed is indicated with accuracy．

NO．	Parameter Name	Setting Range	Default
Fロら	Factory reserved	$0 \sim 1$	0

NO．	Parameter Name	Setting Range	Default
FSG	Inclination characteristic of free unit display	$0 \sim 1$	1

0 ：Negative inclination（downward slope）
1：Positive inclination（upward slope）

NO．	Parameter Name	Setting Range	Default
$F E \square 7$	Bias of free unit display	$0.00 \mathrm{~Hz} \sim \mathrm{FO} \boldsymbol{0} 7$	0.00

Figure 5．35 Description of freeunit
If 5

NO．	Parameter Name	Setting Range	Default
F6日昌	Free step 1 （pressing a panel key once）	$0.00 \mathrm{~Hz} \mathrm{\sim F} 507$	8， 818

0．00：disabled．
0．01～下日 97 ：enabled．
Under normal conditions，the frequency command value from the keypad increases in steps of 0.1 Hz each time you press the $\mathbf{\Delta}$ key．

If 5 G日 is not 0.00 ，the frequency command value will increase by the value with 5Ω each time you press the $\boldsymbol{\Delta}$ key．Similarly，it will decrease by the value set with 56 each time you press the \boldsymbol{V} key．In this case， the output frequency displayed in standard monitor mode changes in steps of 0.1 Hz ，as usual．

The frequency（ 50 ）set on the keypad changes in steps of $10.0 \mathrm{~Hz}: 0.0 \rightarrow 20.0 \rightarrow \ldots 50.0(\mathrm{~Hz})$ ，each time you press the $\boldsymbol{\Delta}$ key．This function comes in very handy when operating the load at limited frequencies that change in steps of $1 \mathrm{~Hz}, 5 \mathrm{~Hz}, 10 \mathrm{~Hz}$ ，and so on

NO．	Parameter Name	Setting Range	Default
FG日	Free step 2（panel display）	$0 \sim 255$	0

0：disabled．
1～255：enabled．
When F 日昌 is not 0．00，and $F 98$ is not 0 （disabled）：
Output frequency displayed in standard monitor mode $=$ Internal output frequency \times F 5 日
 changes in steps of $1 \mathrm{~Hz}: 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 50(\mathrm{~Hz})$ and also the value displayed on the keypad changes in steps of 1 ．Use these settings to hide decimal fractions and also the value displayed on the keypad changes in steps of 1．Use these settings to hide decimal fractions．

The settings of 595 and f608 have no effect when the free unit selection（ 584 ）is enabled．

NO．	Parameter Name	Setting Range	Default
FG \boldsymbol{G}	Standard monitor display selection	$0 \sim 11$	0

0：Output frequency（ $\mathrm{Hz}($ free $)$ ）
1：Frequency command（ $\mathrm{Hz}($ free $)$ ）
2：Output current（\％／A）
3：Frequency inverter rated current (A)
4：Frequency inverter load（\％）
5：Output power（kW）
6：Stator frequency（ Hz （free））
7：Communication data display
8：Output speed
9：Communication counter
10：Normal communication counter
11：Stop－given frequency（
Note：The parameter FIG determines the default value displayed on the first line of the keyboard panel when in power mode．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{G} \boldsymbol{i}$	Panel running order clear selection	$0 \sim 1$	1

0：Clear（when standby terminal OFF）．1：Keep（when standby terminal OFF）．
Note 1：When F G i $:=0$ ，Put OFF the standby terminal（see input function 1 ）will stop the motor．．

NO．	Parameter Name	Setting Range	Default
\boldsymbol{F} にコ	Panel operation prohibition（F000）	$0 \sim 1$	0

0：Permitted 1：Prohibited

NO．	Parameter Name	Setting Range	Default
FE \boldsymbol{Z}	Prohibition of panel operation（RUN／STOP keys）	$0 \sim 1$	0

0：Permitted．1：Prohibition．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{5} \boldsymbol{4}$	Prohibition of panel emergency stop operation	$0 \sim 1$	0

0：Permitted．1：Prohibition．

NO．	Parameter Name	Setting Range	Default
Fロ $\boldsymbol{\text { B }}$	Integral output power retention selection	$0 \sim 1$	1

0 ：（clear），with the main power off，not retention of integral output power values．
1：（memory），with the main power off，retention of integral output power values．

NO．	Parameter Name	Setting Range	Default
$F \mathbf{B} \mathbf{7}$	Integral output power display unit selection	$0 \sim 3$	varies by model

0：1kWh．1：10kWh．
2： 100 kWh ．
3： 1000 kWh ．

NO．	Parameter Name	Setting Range	Default
FE：B	Search and resetting of changed parameters selection	$0 \sim 1$	0

0：Disable．Not display＂－ifF－＂parameter group．1：Enable．Display＂－ifF－＂parameter group．
Users can automatically searches for those parameters that are programmed with values different from the standard default setting and displays them in the＂－i，F－＂parameter group．Parameter setting can also be changed within this group．

NO．	Parameter Name	Setting Range	Default
F519	Frequency converter internal temperature monitoring		
F日㫛	Frequency converter internal temperature monitoring		
NO．	Parameter Name	Setting Range	Default
Fロこ	LCD contrast control	15－40	25
Fロゴ	Factory reserved		

NO．	Functional description Fロココ		
Bit	Additional function	0	1
0	Description	OFF	ON
1	The upper fan runs by itself	OFF	ON
$2-15$	Output positive power monitoring		

NO．	Parameter Name	Setting Range	Default
Fロッタ	Keyboard panel displays 2	Same as F吕 18	2
	Quick Monitoring 1	Same as F昌保	
Fロゴ	Keyboard panel displays 3	Same as F\％	1
	Quick Monitoring 2	1~8: seeF口 9：PID is given 10：PID feedback	
	Keyboard panel displays 4	Same as FEI日	
「日気	Quick Monitoring 2	1~8: see下曰 9：PID is given 10：PID feedback	5

－Quick monitoring：
Fast monitoring is mainly used for LED panels（including：single LED，double LED）．
 switching ENT button．（If it is a double LED panel，switch the display on the first row）

Options（1－8）of FEGS and FESG are the same as those of $F 5$ ．Option 9 is given PID and option 10 is PID feedback，as follows：

0 ：Motor working frequency（ Hz or customized display）．
1：Speed given（Hz or customized display）．（marked with the letter F）
2：Motor current（\％or A）．（identified by letter C）
3：Rated current of frequency converter（A）．（identified by letter C）
4：Frequency converter thermal state（\％）．
5：Output power（kW）．
6：Internal speed given（Hz or custom display after PID function）．
7：Serial communication data．
8：Output speed（RPM）．
9：PID given pressure．（identified by letter G）
10：PID feedback pressure．（marked with letter B）
－Multi－line monitoring：
Multi－line monitoring is mainly used for LCD panels and double LED panels．
The parameter $F \operatorname{Fan}^{2} 4$ determines the type of value displayed by default on the second line of the keyboard panel when in power－on mode．

The parameter $F 5 \Xi 5$ determines the type of value displayed by default on the third line of the keyboard panel when in power－on mode．

The parameter $F 5 こ \square$ determines the type of value displayed by default on the fourth row of the keyboard panel in power－on mode．

NO．	Parameter Name	Setting Range	Default
$F E \Xi 7$	Relay output－PID feedback check out	$0.00 \sim 99.99$	0.00
$F E \Xi G$	Relay output－PID feedback to detect bandwidth	$0.00 \sim 99.99$	0.00

$F \Sigma \Xi 7$ and $F \boxed{F} \Omega$ mainly cooperate with relay function［84］to realize pressure reduction pump control；
$F E G$ is also used in the relay function［86］to monitor the status of feedback pressure．

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \Xi$ G	Factory reserved	-	-

6．8 Additional function parameter group

NO．	Parameter Name	Setting Range	Default
FTR 日	Panel JOG mode selection	$0 \sim 1$	0

JOG key for multifunctional reuse key，f700 and F601 can be set together to achieve the following functions： forward／reverse switch，local／remote switch，shortcut menu function（default），inching function．

| NO． | F7日 |
| :--- | :--- | :--- | :--- |

1	0	0	Local／remote switching，power off to maintain； （Local sign：SET and MON lights on at the same time）
2	0	1	Non－function
3	0	2	Local／remote switching，power outage recovery default Settings； （Local sign：SET and MON lights on at the same time）
4	1	0／1／2	Ching function
5	2	$0 / 1 / 2$	Shortcut Menu 1
6	3	$0 / 1 / 2$	Shortcut Menu 2
7	4	$0 / 1 / 2$	Shortcut Menu 3
8	5	0／1／2	
9	6	0／1／2	Positive and negative switching（no LED identification）

Note：When JOG key is for local／remote switching function，the setting of Figi is invalid，and JOG key action shall prevail．

NO．	Parameter Name	Setting Range	Default
Fアロ゙	jog run frequency	$0.0 \sim 20.0$	5.0
NO．	Parameter Name	Setting Range	Default
Fアロコ	Jog stopping pattern	$0 \sim 2$	0

0：Slow down stop．1：coast stop．2：DC braking．
Use the jog run parameters to operate the motor in jog mode．Input of a jog run signal fenerates a jog run frequency output at once，irrespective of the designated acceleration time．

NO．	Parameter Name	Setting Range	Default
F7昌 3	Jump frequency 1	$0.0 \mathrm{~Hz} \sim$ F 07	0.0
F7星年	Jumping width 1	$0.0 \sim 30.0 \mathrm{~Hz}$	0.0
F7毼	Jump frequency 2	$0.0 \mathrm{~Hz} \sim$ F．06 7	0.0
F78日	Jumping width 2	$0.0 \sim 30.0 \mathrm{~Hz}$	0.0
F7星	Jump frequency 3	$0.0 \mathrm{~Hz} \sim$ F昌箸7	0.0
F78日	Jumping width 3	$0.0 \sim 30.0 \mathrm{~Hz}$	0.0

Resonance due to the natural frequency of the mechanical system can be avoided by jumping the resonant frequency during operation．During jumping，hysteresis characteristics with respect to the jump frequency are given to the motor．

Do not set the jump parameters，if multiple jump frequency setting width overlapped．
During acceleration or deceleration，the jumping function is disabled for the operation frequency．

Figure 5.36 Description of jump frequency

NO.	Parameter Name	Setting Range	Default
F789	Braking mode selection	$0 \sim 3$	0

0: OFF . 1: Forward direction.
2: Reverse direction. 3: Same set direction to $\mathscr{\boxed { G } \text { コ. }}$

NO.	Parameter Name	Setting Range	Default
F76	Braking Release frequency	$0.0 \sim 20.0 \mathrm{~Hz}$	3.0
F7 11	Braking Release time	$0.0 \sim 25.0 \mathrm{~s}$	0.5
$F 76$	Braking Creeping frequency	$0.0 \sim 20.0 \mathrm{~Hz}$	3.0
F713	Braking Creeping time	$0.0 \sim 25.0 \mathrm{~s}$	1.0

Figure 5.37 Description of braking mode sequency

NO．	Parameter Name	Setting Range	Default
F7 4	Droop control gain	0～100\％	0
F715	Droop control insensitive torque band	0～100\％	10

The droop control function refers to the function of operating the power－running motor at operating frequency F1
(Hz) that is lower than command frequency $\mathrm{F0}(\mathrm{~Hz})$ by droop frequency $\Delta f(\mathrm{~Hz})$ when the torque current is T1
（\％）．The droop frequency $\Delta \mathrm{f}$ can be calculated，using the following expression．

When the torque current is above the specified droop insensitive torque band（ $F 7 \boldsymbol{1} \boldsymbol{I}$ ），the frequency is reduced during power running or increased during regenerative braking．

The above figure shows an example of the operating frequency during power running．During regenerative braking，control is performed in such a way as to increase the frequency．

The droop function is activated above the torque current set with $F 7 \boldsymbol{7}$
The amount of droop frequency Δf varies depending on the amount of torque current $T 1$ ．
Note：If the base frequency exceeds 100 Hz ，count it as 100 Hz ．Control is exercised between the starting

［An example of calculation］

Droop insensitive torque band $F 7 \boldsymbol{i}=30(\%)$
Droop frequency $\Delta f(\mathrm{~Hz})$ and operating frequency F1 when command frequency F0 is $50(\mathrm{~Hz})$ and torque current T1 is 100 （\％）are as follows．

Droop frequency $\Delta \mathrm{f}(\mathrm{Hz})=\mathrm{vl} \times F$ Fi4×（T1－F7i5）
$=60(\mathrm{~Hz}) \times 10(\%) \times(100(\%)-30(\%))$
$=4.2(\mathrm{~Hz})$
Operation frequency F1（Hz）＝F0 $-\Delta f=50(\mathrm{~Hz})-4.2(\mathrm{~Hz})=45.8(\mathrm{~Hz})$

NO．	Parameter Name	Setting Range	Default
F7： 5	Preset－speed 1	FO日G～F008	3.0
F7：7	Preset－speed 2	FO日G～FO日G	6.0
$F 719$	Preset－speed 3	F0日g～F0日g	9.0
F719	Preset－speed 4	F0日g～F0日g	12.0
$F 730$	Preset－speed 5	F0日G～F008	15.0
F7E	Preset－speed 6	FO日G～FO日G	18.0
$F 7 E 己$	Preset－speed 7	F009～F00日	21.0
Fフこコ	Preset－speed 8	F009～F0日g	24.0
$F 724$	Preset－speed 9	F009～F008	27.0
F725	Preset－speed 10	F0日g～F0日g	30.0
$F 725$	Preset－speed 11	F0日G～F00日	33.0

NO．	Parameter Name	Setting Range	Default
Fヲご	Preset－speed 12		36.0
$F 7 \boxed{\square}$	Preset－speed 13		39.0
F7ご	Preset－speed 14		45.0
F730	Preset－speed 15		50.0

A maximum of 15 speed steps can be selected just by switching an external contact signal．Multi－speed frequencies can be programmed anywhere from the lower limit frequency 59 to the upper limit frequency F日昌昌。

Use the input terminal function selection to allocate＂Preset－speed command 1＂to＂Preset－speed command 4＂ terminal．For more information，see table 5．8．

Table 5．8 Relation between Preset－speed command and Preset－speed

Setting Frequency	Preset－speed command 4	Preset－speed command 3	Preset－speed command 2	Preset－speed command 1
preset－speed commands are invalid	0	0	0	0
Preset－speed 1	0	0	0	1
Preset－speed 2	0	0	1	0
Preset－speed 3	0	0	1	1
Preset－speed 4	0	1	0	0
Preset－speed 5	0	1	0	1
Preset－speed 6	0	1	1	0
Preset－speed 7	0	1	1	1
Preset－speed 8	1	0	0	0
Preset－speed 9	1	0	0	1
Preset－speed 10	1	0	1	0
Preset－speed 11	1	0	1	1
Preset－speed 12	1	1	0	0
Preset－speed 13	1	1	0	1
Preset－speed 14	1	1	1	0
Preset－speed 15	1	1	1	1

NO．	Parameter Name	Setting Range	Default
F7コi	Factory reserved		
Fヲゴ	Multi－speed 0 run time	0～6500．0s（min）	0.0
F7ヨコ	Multi－speed 1 run time	0～6500．0s（min）	0.0
F734	Multi－speed 2 run time	0～6500．0s（min）	0.0
$F 7 \Xi 5$	Multi－speed 3 run time	0～6500．0s（min）	0.0

NO．	Parameter Name	Setting Range	Default
F7コロ	Multi－speed 4 run time	0～6500．0s（min）	0.0
$F 7 ヨ 7$	Multi－speed 5 run time	0～6500．0s（min）	0.0
F7コロ	Multi－speed 6 run time	0～6500．0s（min）	0.0
F739	Multi－speed 7 run time	0～6500．0s（min）	0.0
$F 748$	Multi－speed 8 run time	0～6500．0s（min）	0.0
F74i	Multi－speed 9 run time	0～6500．0s（min）	0.0
F742	Multi－speed 10 run time	0～6500．0s（min）	0.0
F743	Multi－speed 11 run time	0～6500．0s（min）	0.0
F744	Multi－speed 12 run time	0～6500．0s（min）	0.0
5745	Multi－speed 13 run time	0～6500．0s（min）	0.0
F745	Multi－speed 14 run time	0～6500．0s（min）	0.0
F747	Multi－speed 15 run time	0～6500．0s（min）	0.0

Multi－step speed 0 means F

NO．	Name	Range	Default
$F 74 日$	PLC speed direction choice	$0 \sim 65535$	0

Setup method：Running direction follows the parameter，i．e．Turn 16bit Binary number into decimal system value．

Setup instruction

Setup Example

Parameter setup value

$F 74 日=\operatorname{Bit} 15 * 2^{15}+\operatorname{Bit} 14 * 2^{14}+\ldots+\operatorname{Bit} 1 * 2^{1}+\operatorname{Bit} 0 * 2^{0}$

$$
\begin{aligned}
& =0 * 2^{15}+0 * 2^{14}+1 * 2^{13}+\ldots+1 * 2^{7}+1 * 2^{6}+\ldots+1 * 2^{1}+0 * 2^{0} \\
& =8192+128+64+2=8386
\end{aligned}
$$

Times square quick solution table
$2^{15}=32768,2^{14}=16384,2^{13}=8192,2^{12}=4096,2^{11}=2048,2^{10}=1024,2^{9}=512,2^{8}=256$ ， $2^{7}=128,2^{6}=64,2^{5}=32,2^{4}=16,2^{3}=8,2^{2}=4, \quad 2^{1}=2,2^{0}=1$

NO．	Name	Range	Default
F 749	Simple PLC running mode choice	$0 \sim 2$	0

0 ：Stop after one－time running．The drive completes one cycling running and then automatically stop．Need one more running command to restart．

1：Run one time and keep final value running．The drive automatically keeps the final running frequency and direction after one single cycling running．

2：Cycling running．The drive will automatically come into next cycling after fulfilling one cycle until there is stop command．

Logic output function．

NO．	Name	Range	Default
Fクロ日	Simple PLC restart mode choice	$0 \sim 2$	0

0 ：Run from the first paragraph．If the machine stops during operation（by stop command，fault），it will start from the first section after starting again．

1：Continue operation from the frequency of interruption time．If the machine stops during operation（by stop command，failure），the inverter will automatically record the running time of the current stage，and automatically enter this stage after starting again，and continue the operation of the remaining time at the frequency defined in this stage．

NO．	Name	Range	Default
F7ら ；	Simple PLC power－off memory choice	$0 \sim 1$	0

0：Don＇t memorize power－off history．1：Memorize power－off history．
PLC power－off memory means recording PLC running phase and running frequency before powering－off．

NO．	$F 750$	F75：	Power off state	Power up again，run time status
1	0	0	Downtime	Run from the first section of the PLC
			Running	Run from the first section of the PLC
2	1	0	Downtime	Run from the first section of the PLC
			Running	Run from the first section of the PLC
3	0	1	Downtime	Run from the first section of the PLC
			Running	Run from the time of power outage frequency
4	1	1	Downtime	Run from the down frequency
			Running	Run from the time of power outage frequency

NO．	Name	Range	Default
$\boldsymbol{\Im \Xi \Xi ~}$	Simple PLC running time unit choice	$0 \sim 1$	0

0：Second（s）
1：Minute（min）

NO．	Name	Range	Default
Fアラコ	Nonstandard function selection	$0 \sim 65535$	0

0：Standard features
1～65535：Non－standard functions．
Note 1：This parameter shall be effective if the frequency converter is switched on after power off．
Note 2：This parameter cannot be reset by F In＝1．

NO．	Name	Range	Default
F754	Al1 curve selection	$0 \sim 1$	0

0：Curve 1 （point 2，seeトコロコ～トコロロ）
1：Curve 2 （4 points，seeドラム～ト7ロコ）
Al1 has two setting curves，which can be selected by parameter F754．Where curve 1 is a 2－point line and curve 2 is a 4－point curve（as shown in the figure below）．

When the corresponding frequency of Al 1 is set through the 4－point curve in the figure above：
（1）The frequency set by Al1 can be positive or negative．When is positive，the operation can be reversed；when is negative，the operation can be reversed．In addition，F5 reverse switch．
（2）When Al1 input＜F75 ，the output frequency is $F 75$ ；
When Al1 inputs＞F7ロ i ，the output frequency is F7E．
（3）Step is allowed to occur at a given frequency of Al1．

NO．	Name	Range	Default
F755	Al1 curve 2 set point 1 input	0．0～100．0\％	0．0\％
F75	Al1 curve 2 sets point 1 output	－100\％～100\％	0．0\％
5757	Al1 curve 2 set point 2 input	0．0～100．0\％	30．0\％
F75日	Al1 curve 2 sets point 2 output	－100\％～100\％	30．0\％
F759	Al1 curve 2 set point 3 input	0．0～100．0\％	60．0\％
F75日	Al1 curve 2 sets point 3 output	－100\％～100\％	60．0\％
F75i	Al1 curve 2 set point 4 input	0．0～100．0\％	100．0\％
F「ロロ	Al1 curve 2 sets point 4 output	－100\％～100\％	100．0\％

NO．	Name	Range	Default
F75コ	LI1 effective delay	$6500.0 \sim 0.0 \mathrm{~s}$	0.0
F754	LI1 invalid delay	$6500.0 \sim 0.0 \mathrm{~s}$	0.0
F75与	LI2 effective delay	$6500.0 \sim 0.0 \mathrm{~s}$	0.0
F7吕	LI2 invalid delay	6500．0～0．0 s	0.0

NO．	Name	Range	Default
F757	Al1 filtering coefficient	0．00－10．00	0.30
F76日	AI2 filtering coefficient	0．00－10．00	0.30
F759	AO1 filtering coefficient	0．00－10．00	0.00
F77	AO2 filtering coefficient	0．00－10．00	0.00

Note：F757 and F7日日 are filtering coefficients of analog input Al1 and Al2．By increasing the value appropriately，the anti－interference ability of analog input can be enhanced，but its sensitivity will be weakened．
$F 759$ and $F 77$ are filter coefficients of ANALOG output AO1 and AO2．Increasing this value can enhance the stability of analog output，but weaken its sensitivity．

NO．	Name	Range	Default
$\boldsymbol{F 7} \boldsymbol{7}$ i	Enable Reverse Jog frequency	$0.0 \sim 20 \mathrm{~Hz}$	0.0

0 ：Reverse inching frequency is forbidden．At this time，press F7日i for inching frequency，the inching acceleration time is 0.1 s （not adjustable），and the deceleration time is \mathcal{F} it．
 FSig for inching deceleration time．For reverse inching，the inching frequency is $\boldsymbol{F} \boldsymbol{7} \boldsymbol{7} \boldsymbol{i}$ ，and the reverse inching acceleration and deceleration time is 5Ω and $5 \Omega i$ ．

NO．	Name	Range	Default
Fアクシ	Password Setting	$0 \sim 9999$	0
Fアラコ	Password duration	$0 \sim 9999$	5

6．9 Communication function parameter group

NO．	Parameter Name	Setting Range	Default
$F 日 G$	Modbus baud rate	$0 \sim 1$	1

0： 9600 bps．1： 19200 bps．2： 4800 bps． $3: 2400 \mathrm{bps} .4: 1200 \mathrm{bps}$.
Remarks：it only works after re－power on if we decide to modify 58 ．

NO．	Parameter Name	Setting Range	Default
F日G $\boldsymbol{\text { G }}$	Modbus parity	1	1

0：NONE，datum format ：＜8，N， $2>$ ．1：EVEN，datum format $:<8, E, 2>$ ．2：ODD，datum format $:<8, O, 2>$ ．
Remarks：it only works after re－power on if we decide to modify F日昷

NO．	Parameter Name	Setting Range	Default
F日に	Modbus address	$0 \sim 247$	1

NO．	Parameter Name	Setting Range	Default
F日ヨ	Modbus timeout	$0 \sim 100$	0

0：timeout check disabled．
1－100：1＝1s．

NO．	Parameter Name	Setting Range	Default
F日晶	Modbus transger waiting time	$0 \sim 2.00 \mathrm{~s}$	0.00

NO．	Parameter Name	Setting Range	Default
F日G	Modbus behaviour on communication fault	$0 \sim 4$	4

1：None（continued operation）2：Deceleration stop 3 ：Coast stop
4：Communication error $(\underline{E}-\exists \exists$ trip $)$ or Network error（ $\mathcal{E}-\Xi$ trip）

NO．	Parameter Name	Setting Range	Default
F日G	Number of motor poles for communication	$1 \sim 8$	2

The parameter setup will place the influence upon the display of 1810

NO．	Parameter Name	Setting Range	Default
$\boldsymbol{F} \boldsymbol{G} \boldsymbol{\Xi}$	Module writes data 1	$0 \sim 6$	1
$\boldsymbol{F} \boldsymbol{\text { i H }}$	Module writes data 2	$0 \sim 6$	3

0：Off

1：Communication command control（FA05）
2：Reservations
3：Communication frequency setting（FA08）
4 ～6：reservations
Note：（1）the setting of F 日
（2）Block first address is 1813 H （hexadecimal 1813）．

NO．	Parameter Name	Setting Range	Default
F日 5	Module datas read 1	0～21	1
F日 5	Module datas read 2	0～21	2
F日i7	Module datas read 3	0～21	12
F日 6	Module datas read 4	0～21	18
F日 9	Module datas read 5	0～21	8

0 ：Off
1：Status Information（FD03）
2：Output frequency（FD12）
3：Output current（FE08）
4：Output voltage（FE10）
5：Fault information（FC39）
6：PID feedback value（FA36）
7：Input terminal information（FD01）
8：Output terminal information（FD02）
9：Al1 input（FE30）
10：AI2 input（FE31）
11：Motor speed（FE50）
12：Absolute value of output current（E002），unit 0．01a
13：Absolute value of output voltage（E006），unit V
14：Absolute value of input voltage of $D C$ bus（E009），unit V
15：PID given value（FA35）
16：Output torque（FE20）， 0.01% of rated torque per unit motor
17：Input power（FE28）， 0.01 kW
18：Output power（FE29）， 0.01 kW
19：Input power accumulation／input electric energy（FE44），the unit is determined according to the parameter FG：7

20：Output power accumulation／output electric energy（FE45），the unit is determined according to the parameter FG：7

21：Cumulative running time（FE17），unit h（hours）
Note：（1）the setting of f815－f819 must be switched on after power off until the LED display is black．
（2）Block first address 1815H（hexadecimal 1815）
（3）The range of the number of registers read is $2-5(2-5)$ ．

NO．	Parameter Name	Setting Range	Default
F日こ1	Factory reserved		
F日ご	Factory reserved		
ト日ご	Factory reserved		
F日【年	Factory reserved		
Fロご	Factory reserved		
F日コロ	Factory reserved		
F日こ7	Factory reserved		
F日こ日	Factory reserved		
F日 FG $^{\text {F }}$	Factory reserved		

NO．	Parameter Name	Setting Range	Default
F日ゴ品	PID setting of keypad	$0 \sim 100 \%$	0.0

F日 $\mathcal{I}=100 \%$ can make the sensor output the maximum value．
The 100% standard value of F G sensor is $0.0 \sim 1.6 \mathrm{Mpa}$ for example，set $\boldsymbol{F} \boldsymbol{\square} \boldsymbol{I}=100 \%$ means that pressure setting is 1.6 Mpa ．

Note 2： 5 日 updated．

6．10 Process PID parameter group

PID control is a common method used in process control．By carrying out proportional，integral and differential operations on the deviation between the feedback signal of the controlled quantity and the target quantity，the output frequency of the inverter can be adjusted to form a negative feedback system to stabilize the controlled quantity on the target quantity ．Suitable for flow control，pressure control，temperature control and other process control．The control basic principle block diagram is as follows：

Figure 5．38 Block diagram of PID process control
F马日～下の diagram of process PID control function is shown as below：

Figure 5．39 Block diagram of built－in PID controller
PID dormancy mode（the priority is reduced in order）：
－Pressure dormancy（key parameter：FG iモ゙）
－Sleep at lower frequency（key parameter：F8日）
－PID wake－up mode（the priority is reduced in order）：
－Deviation wake－up（key parameter：F907）
－Feedback value wake－up（key parameter：F9日）
－Pressure wake－up（key parameter：FG i i）
－Frequency wake－up（key parameters：F0日，F905）

NO．	Parameter Name	Setting Range	Default
F9OB	PID control enabled／disabled	$0 \sim 2$	0

0 ：Disabled
1：Enabled（Feedback：Al1）
2：Enabled（Feedback：Al2）
Note 1：The control parameter for enabling or disabling THE PID function is $F 90$ ，not $F 0.3$ for the given PID source selection parameter．

Note 2：PID given source（F

Figure 5.40 PID wiring example

Process quantity input data（frequency or percentage term）and feedback input data can be combined as follows for the PID control．See table 5．9．

Table 5．9 PID setting and PID feedback

PID given source		PID feedback source
F003（F0日5）setting	Given source	F900 setting
0	built－in potentionmeter	$F 908=1:$ AI1，0～5VDC or 0～10V DC or 4～20mA DC．
1	Al1	
2	Al2	
3	Keyboard panel（given frequency）－ not recommended	
4	Communication setting（given frequency）	
5	UP／DOWN from external contact	AI2, 0~10V DC.
6	－	
7	Keyboard panel（PID given）－F9	
－（when under remote control，FO日コ＝0）	Multistep speed setting	

Note 1：FI is the multiplexing parameter for the given source of frequency and PID
When 59 日 0 （PID is disabled），F
When F9 9 （PID enabled），F

 The two methods have the same effect．

Note 4：With the relevant parameters such as Fir ，the given parameters of 5 （secondary set）can be calculated as the final PID to achieve the primary and secondary operation function given

NO．	Parameter Name	Setting Range	Default
F96	Proportional gain	0．01～100．0	varies by model
F9日可	Integral gain	0．01～100．0	varies by model
F903	Differential gain	0．00～2．55	0.00

The control effect of F9i：The greater the setpoint is，the smaller the deviation between target value and feedback value after stability is．However，excessively large setpoint may arouse vibration in the controlled object and make it unstable．Furthermore，if the setpoint is small，the deviation between target value and feedback value after stability becomes greater．

The control effect of \mathcal{F} 园：Any residual deviation after proportional gain tuning can be cleared with time through integral gain function．Higher integral gain can realize rapid response to process deviation，but may result in unstability such as oscillation．

The control effect of $\mathcal{F} 9$ ： 7 ：Differential gain will tune the response time of the frequency inverter according to the rapid change during the process．Unnecessary raise of of differential gain value may result in greater fluctuation of the motor speed and make the system unstable．

NO．	Parameter Name	Setting Range	Default
FGM4 M4，	PID controls wait／delay time	$0 \sim 2400 \mathrm{~s}$	0

When Fgitifo，the frequency converter will not enter the PID control immediately when starting，and the PID will only be enabled after the time delay set by 594.

During the time set by 5940 ，PID is disabled， 518 is switched to select channel for the given source of frequency，and the motor is accelerated to the speed corresponding to the given source．For example，when F日日

NO．	Parameter Name	Setting Range	Default
FG	Pl regulator deviates the input signal to take the reverse／direction	$0 \sim 1$	0

0：Disable／positive．PID feedback＜timing，frequency converter output increases；On the contrary，the output frequency of the converter decreases．

1：Enable／react．PID feedback＜timing，frequency converter output decreased；On the contrary，the output frequency of the converter increases．
Note：PID regulator negation is performed in two ways：Make $F 95=1$ ，or define logic input function as 38 and the corresponding terminal is closed．

Note：PID regulator can be inverted in two ways．Let $\mathcal{F} 5=1$ ，or define the logical input function as 38 and close the corresponding input terminal．

NO．	Parameter Name	Setting Range	Default
F985	Sleep mode awakening hysteresis bandwidth	$0.0 \mathrm{~Hz} \sim$ F昌昌 7	0.2
F9\％	Sleeping mode awakening threshold based on PI deviation	$0.0 \mathrm{~Hz} \mathrm{\sim} \mathrm{~F} 87$	0.0
F90日	Sleeping mode awakening threshold based on PI feedback	$0.0 \mathrm{~Hz} \sim$ F 97	0.0
F9 68	wake up delay	0～600．0s	0.0
F919	Auto wake up level	0～100．0\％	0.0

Figure 5.41 description of wake up from sleep mode
There are three types of wakeup：deviation wakeup，threshold wakeup（absolute value or percentage）and frequency wakeup． $\operatorname{FG} 9=0$（deviation signal is taken to reverse disable／positive effect）is described below．
（1）Deviation wake－up：If the following conditions are met，the frequency converter will quit the sleep state．
－（given－feedback）＞wake－up bias（parameter $F 9$ I 9 ）；
－The state duration \geq wake control／delay time（ 1 日 17 ）
（2）Threshold awakening：If the following conditions are met，the converter will quit the sleep state．

－The state duration \geq wake control／delay time（ 15918 ）
（3）Frequency awakening：If the following conditions are met，the frequency converter will enter the sleep state．

－The duration of the two states above \geq wake control／delay time（ 15910 ）
Note 1：priority is：bias to wake up＞threshold（absolute value）to wake up＞threshold（percentage）to wake up＞ frequency，that is，only when high－priority parameter $=0$ ，will the low－priority wake－up mode be entered．

Note 2：The absolute value of 597 and 598 is adopted．When it is pressure signal， 1.00 means 1.0 mpa ．
Note 3：The percentage of $F G i$ is adopted，and the reference value of 100% is PID given to $F G$ ，
Note 4：Fig cannot be 0 when sleeping through the lower frequency，otherwise there may be misoperation．

NO．	Parameter Name	Setting Range	Default
Fת日	sleeping mode action	$0 \sim 1$	0

0：Motor slowdown to a stop．
1：Motor keep running at the speed setting by

NO．	Parameter Name	Setting Range	Default
F918	Dormancy threshold（percentage）	0～100\％	0.0
F915	Sleep control／delay time	0～600．0s	0.1
F919	Dormancy frequency	$0.0 \mathrm{~Hz} \sim$ F昌昌昌	0.0
F9®名	Dormancy tolerance	0．0～25．0\％	0.0

There are two ways of dormancy：feedback threshold dormancy（percentage）and frequency dormancy．FG $=0$（deviation signal is taken to reverse disable／positive effect）is described below．
（1）Feedback threshold sleep：
 will enter the dormancy state．
（2）Frequency dormancy：when the following three conditions are met at the same time，the frequency converter will enter the sleep state．

－Output frequency s sleep frequency Fg 19；
－The simultaneous duration of the above two is \geq sleep time F9 15.
Note 1：priority：threshold hibernation＞frequency dormancy（that is，only when the dormancy threshold $F \Omega$ IZ＝0，enter the frequency dormancy mode）．
Note 2：When $F 9$ i $5=0$ ，the sleep function is disabled．
 GIVEN by PID F 9 ：

NO．	Parameter Name	Setting Range	Default
FG13	Upper limit of PID	0～100\％	100.0
F9 4	Lower limit of PID	0～トヨ ヨ	0.0

 the final actual given will be limited to $[F 9: 4, F 9: 3]$ ．

The setting of $F 9: \exists$ and $F 9$ it adopts percentage，and the reference value corresponding to 100% is sensor range F ： 7 ．

NO．	Parameter Name	Setting Range	Default
F916	PID given control deviation	0．0～100．0\％	0.0
Fgi7	Sensor range	$0.00 \sim 99.99$	1.00
Fgig	PID given	0．00～F马 7	0.00

Both $F 9: 7$ and $F 9: G$ are set in absolute value．When is the pressure signal， 1.00 represents 1.0 mpa ．
$F G: 6$ is the maximum allowable deviation of the feedback from the given．Within the range of deviation，the PID controller stops working，and the accuracy and stability of the PID system can be adjusted by setting the value reasonably．

The setting of $F=1$ USES a percentage，and the reference value of 100% is PID given to $F 9$ ig．Therefore，
 F $9: 6 \%$ ］．

6．11 Monitoring function parameter group

Table 5．10 Status monitor mode

NO．	Parameter Name	Description
0000	CPU1 Version	E．g：wind，G－type，v＝g；P－type，v＝p；
400：	Operation frequency	Value is displayed in $\mathrm{Hz} /$ free unit．See F504．
1003	Direction of rotation	\square Forward run，$\square_{\text {Reverse run．}}$
4003	frequency command value	Value is displayed in $\mathrm{Hz} /$ free unit．See F5， 5 S．
2004	load current	The frequency inverter output current（\％／A）is displayed．
4005	input voltage （AC RMS）	The frequency inverter input voltage（\％／V）is displayed．
4006	output voltage （AC RMS）	The frequency inverter output voltage command（\％／V）is displayed．
4087	Input terminal status indicated	1：OFF i：ON ON 11 kW or below： \square ：OFF \quad＇：on 15kW or above： \square
4008	Output terminal status indicated	

NO．	Parameter Name	Description
4069	cumulative operation time	（0．01＝1 hour，1．00＝100 hours）
4868	Output speed	Displays the motor speed（ min－1）by calculating with output frequency and pole numbers．
边：	Rated current	The rated current of the frequency inverter（A）is displayed．
1412	Torque current	The torque current（\％／A）is displayed．
16：3	Load current	The frequency inverter output current（load current）（\％／A）is displayed．
4064	Torque	The torque（\％）is displayed．
4015	Input power	The frequency inverter input power（kW）is displayed．
1615	Output power	The frequency inverter output power（kW）is displayed．
1697	PID feedback	The PID feedback value is displayed．（Hz／free unit）
1818	Frequency command value （PID－computed）	The PID－computed frequency command value is displayed．（Hz／free unit）
1619	Integral input power	The integrated amount of power（kWh）supplied to the frequency inverter is displayed．
1020	Integral output power	The integrated amount of power（kWh）supplied from the frequency inverter is displayed．
แ日ご	Communication counter	Displays the counter numbers of communication through the network．
แロここ	Normal state communication counter	Displays the counter numbers of communication only at normal state in the all communication through network．
10こう	Cpu2 version	v 10
แ日ご	Parts replacement alarm information	ON：Needs to be replaced
4025	Cpu1 revision	
4025	PID setting	Displayed in \％term．
แ0こ7	PID feedback	Displayed in \％term．
近：－	Past trip 1	Enter into the display of detailed information on past trip 1
はゴ号	Past trip 2	Enter into the display of detailed information on past trip 2
แゴ－	Past trip 3	Enter into the display of detailed information on past trip 3
枵尔－	Past trip 4	Enter into the display of detailed information on past trip 4

Note 1：Items displayed can be changed by pressing $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key in the monitor mode．
Note 2：You can switch between \％and A（ampere）／V（volt），using the parameter 5 selection）．

Note 3：The input／output voltage displayed is as large as the AC root－mean－squre input．
Note 4：The integrated amounts of input and output power will be reset to zero，if you press and hold down the ENT key for 3 seconds or more when power is off or when the input terminal function 32 is turned on or displayed．
Note 5：The cumulative operation time increments only when the machine is in operation．
Note 6：At the occurrence of a trip，maximum values are not always recorded and displayed for reasons of detecting time．

Table 5．11 Display of detailed information on past trip $n(n=1,2,3,4)$

NO．	Parameter Name	Description
－	Cause of trip	E．g．E－ I $^{\text {a }}$
4080	Continuous trips	The number of time the same trip occurred in succession is displayed． （Unit：times）
	CPU1 Version	
ルーロコ	Operation frequency	Value is displayed in $\mathrm{Hz} /$ free unit．See 55064.
4 B 3 O	Direction of rotation	${ }^{D}$ Forward run， \square Reverse run．
2ind	frequency command value	Value is displayed in $\mathrm{Hz} /$ free unit．See $F 504$.
4005	load current	The frequency inverter output current（\％／A）is displayed．
4085	input voltage （AC RMS）	The frequency inverter input voltage（\％／V）is displayed．
4087	output voltage （AC RMS）	The frequency inverter output voltage command（\％／V）is displayed．
4080	Input terminal status indicated	OFF i．ON 11 kW or below：\square ON． 15 kW or above： \squaregitili il 1：OFF 1：ON L18 ．．．LI3 LI2 LI1 LI1
4089	Output terminal status indicated	

Note 1：If no trip occurred in the past，the message＂\cap Er，r＂will be displayed．Detailed information for past trip is not accessed．

Note 2：Details on a past trip can be displayed，even after the frequency inverter is turned off or reset．

7. FAULT DIAGNOSIS AND MEASURES

7.1. Fault code, cause and measures

When fault (failure) occurs, the frequency inverter takes the following actions: The keyboard panel blinks to display the fault code, the frequency inverter stops output and the motor freely stops.

Table 6.1 Fault display and measures

Code of fault	Type of fault	Possible cause	Measures (troubleshooting)
E-3:	Overcurrent protection	- Acceleration time is too short. - V/f parameter is wrongly set. - When the frequency inverter starts, the load is still in rotation. - frequency inverter is supplying power to low-impedance motor. - Interphase short circuit or earthing failure. - Abrupt fluctuation of the load	- Increase acceleration parameter deceleration time (F.0; i or F5 (9) - Select the correct setpoint for V/f. - Adopt forward/reverse speed tracking and restart function (STR function). - Tune the switching frequency. - Check wiring to see if there is Interphase short circuit or earthing failure. - Reduce fluctuation of the load
$E-62$	Interphase short circuit	- Interphase output is short circuit. - Motor impedance is too low.	- Confirm the wiring and insulation status.
E-93	Starting overcurrent	- earthing failure - IGBT unit damage	- Confirm whether the wiring and device are earthing - Connect with factory
E-64	Earthing fault	- earthing failure - IGBT unit damage	- Confirm whether the wiring and device are earthing - Connect with factory
E-85	Underload fault	- frequency inverter 's output current is lower than low current detection threshold.	- Check whether F407~FH: are correctly set.
E-37	Overtorque fault	- The motor estimates that the torque has reached the level set by $54: 2$.	- Adjust the settings of F4: i~FH:4. - Confirm the load status.
E-i	Undervoltag e fault	- Abnormal fluctuation of input voltage; Power network capacity higher than 200 kVA; There is switchable capacitor to improve power factor on the power network; Machine that SCRs is connected to the power network. - frequency inverter starts the load already in rotation.	- Install input reactor or use braking resistance. - Adopt forward/reverse speed tracking and restart function (STR function) (5 上 0 号 $=1$) - Set F-4

Code of fault	Type of fault	Possible cause	Measures（troubleshooting）
E－i	Undervoltag e fault	－There is possible phase failure． －The deceleration time is too short．	－Determine the cause of output phase failure（such as poor connection，open circuit of output or open circuit of motor winding） and correct it． －Increase the deceleration time （FI日 i ；or F（G） －Enable overvoltage fault protection （だ15）
$E-i E$	DC bus undervoltag e fault	－Input voltage is too low．	－Check input voltage． －Set $F 4$ i 7 to select alarm or tripping． －Adopt forward／reverse speed tracking and restart function（STR function）$(550=1)$ －SetFム
$E-E 1$	frequency inverter overload	－Acceleration time is too short． －DC braking current level is too high． －V／f parameter is wrongly set． －When the frequency inverter starts，the load is still in rotation． －The load is too large．	－Increase acceleration parameter Decrease the setting of F5日 7 or F5日日。 －Correctly set V／f parameter． －Set parameter F－4 $18=2$ ． －Adopt one frequency inverter with higher rated power．
$E-\Xi \underbrace{\prime}$	Motor overload	－V／f parameter is wrongly set． －The motor is blocked． －The motor continues to run at low speed． －The load applied to the motor is too large．	－Correctly set V／f parameter． －Check the load．
E－ココ	Braking resistor overload	Improper specification selection for braking resistor	Select competent braking resistor． Prohibit braking resistor overload protection \boldsymbol{F} ご
$E-24$	frequency inverter overheat fault	－frequency inverter＇s cooling fan does not work． －Environment temperature is too high． －Certain ventilation opening is blocked． －There is heat source near the frequency inverter ．	－Reset the frequency inverter＇s fault after cooling and restart the frequency inverter． －Expand the free space around the frequency inverter ；Remove all heat sources near the frequency inverter to lower the environment temperature．
Eーゴ	Motor PTC overheating fault	－External PTC embedded in the motor winding indicates existence of motor overheating．	－Correct motor overheating． －Check whether PTC is working properly． －Check logic input functions 27 and 28.

Code of fault	Type of fault	Possible cause	Measures（troubleshooting）
E－3i	EEPROM fault	－Data writing and read errors occur． －The frequency inverter has power failure during parameter reset．	－Power on the frequency inverter to eliminate the fault．If the fault can not be eliminated，contact us or the distributor for maintenance or repair of the frequency inverter．
$E-\exists コ$	Control board fault	－Control board cannot work	－Connect manufacturer to maintain
$E-3 \exists$	Communica tion fault	－Network communication error．	－Check network control devices and cables． －Check the setting of communication overtime parameter 5 － 0. －Check remote keyboard panel cable．
E－34	Current sensor fault	－The current sensor is in abnormal status．	－Replace the frequency inverter
$E-35$	Network fault	－Network error	－Check network control devices and cables．
$E-35$	frequency inverter type error	－frequency inverter hardware fault	－F －If error is still，connect manufacturer to maintain
$E-38$	Al1 signal Loss	－Al1 analog signal level is lower than the level set by the parameter F HEコ．	－Check signal on AI1 to eliminate the cause of signal loss． －Confirm whether F－ゴ is correctly set．
E－39	frequency inverter inside communicat ion error	－communication error between keyboard and control board CPU	－Connect manufacturer to maintain
E－4：	Input phase failure	－The input side of the main circuit is phase failure． －The inside component of the frequency inverter is in abnormal state．	－Determine the cause of input phase failure and correct it． －Set $F 405=0$ ．
$E-42$	Output phase failure	－The output side of the main circuit is phase failure．	－Determine the cause of input phase failure（such as poor connection，open circuit of output or open circuit of motor winding） and correct it． －Set $545=0$ ．
$E-43$	Emergency stop fault	－Use the keyboard panel to perform stop operation when the motor works under remote mode．	－Perform fault reset．
E－45	Torque boost is too large	－Setting of torque boost parameter F20 3 is too high． －Motor impedance is too low．	－Repeat self－tuning of the frequency inverter and downward tune parameter $F \approx \mathbb{O}$ ．

Code of fault	Type of fault	Possible cause	Measures (troubleshooting)
$E-45$	Self-setting error	- Confirm whether motor rated parameter settings are correct. - The motor capacity is far smaller than that of the frequency inverter . - Cable of the motor is too thin. - Motor is still in rotation when the self-setting starts.	- Correctly set motor rated parameters. - Use frequency inverter with larger capacity. - Apply thicker cable of the motor. - Confirm the motor has stopped before the self-setting begins.
$E-9 B$	Pull-out keypad communicat ion fault	- Communication fault between pull- out keypad and internal CPU	• Please contact us
$E-99$	Big power display communicat ion fault	- Communication fault for frequency inverter above 15kw(including) display keypad and internal CPU	• Please contact us

7.2. Description of alarm and indication code

Table 6.2 Alarm display and measures

Code	Description	Cause	Measures
8-00	Fault reset is acceptable.	Under fault code display state, press STOP key and A-0 in displayed.	Press the STOP key again and the fault is eliminated.
日-8:	Undervoltage indication	Insufficient input voltage	Check the 3-phase input power supply. If the power supply is normal, the frequency inverter has to be repaired.
$\begin{aligned} & 0.0 \\ & \text { (flash) } \end{aligned}$	"Running ready" is invalid	Under remote control mode the corresponding terminal to the logic input function 1 is not closed.	Configure one logic input function as 1 , and close this terminal.
8-85	Abnormal setting of frequency point	Frequency points at point 1 and point 2 are set too closely.	Do not set $F \exists \Xi 5$ and $F \exists \Xi 7$ too closely. Do not set $F \Xi \Xi 马$ and $F \Xi \Xi ;$ too closely.
8-35	Free stop action during transient power failure.	$F 4: B$ is set to 2 and transient power failure occurs.	Input running signal to the frequency inverter again or reset the frequency inverter .
8-87	In DC braking	DC braking function is activated.	If the code disappears in several seconds, the frequency inverter comes back to normal.
8-88	In running retrial	The frequency inverter is in the process of restart. Forward/reverse speed tracking and restart function (STR function) is activated.	The alarm code is momentarily displayed then disappears, and the frequency inverter restarts.
8-90	In low speed sleep	See parameter F50	Disabled This function or raise the frequency instrution to F006+F906.

Code	Description	Cause	Measures
日－i	Key fault on the keyboad	Certain key on the keyboard panel is continously pressed more than 20 s or the panel is damaged．	If all keys are released but the alarm does not disappear，the frequency inverter has to be repaired．
日－12	In the process of parameter initialization	See parameter F．	If the alarm code is momentarily displayed and then disappears，the frequency inverter comes back to normal．
日－13	Loss of analog signal	Analog input terminal detection level is lower than the setting level of Fージコ。	Check analog input terminal
$E 1$	Exceeding displayed digit number by 1 digit	Displayed digit number exceeds 4 digits．	Try to reduce the setpoint of F－ゴ心．
Eun	In the process of self－setting	frequency inverter is performing self－setting．	If the alarm code is momentarily displayed and then disappears，the frequency inverter comes back to normal．

Table 6．3 Display of early warning code

Code	Type	Description
－－－	Overcurrent early warning	frequency inverter is in current amplitude limiting state． See parameters F ig 7 and F i i
－－i．	Overvoltage early warning	frequency inverter approaches overvoltage fault．See parameters 5415 and 5415.
－ 1 －－	Overload early warning	This code is displayed when the motor or frequency inverter overload counter exceeds 50% ．
H－－	Overheat early warning	frequency inverter approaches overheat fault．

Note：Early warning types can occur simultaneously．E．g，when overheat early warning and overcurrent early warning happen in the same time，the corresponding code is $\boldsymbol{H}--5$.

7．3．Restart of the frequency inverter after fault occurs

After failure occurs in the frequency inverter，it can be restarted only when the cause of the failure has been eliminated．Please follow the undermentioned operations to realize fault reset of the frequency inverter ．

1 When the command source of the frequency inverter is keyboard panel（under local control mode，or under remote mode and $F \Omega=1$ ），press STOP key on the keyboard panel after the fault is eliminated．The keyboard will display 17 － 1 ．Press the STOP key again，and the frequency inverter realizes fault reset．At this moment it is allowable toto re－supply power to the motor．

2 When the frequency inverter is under remote control mode and $\boldsymbol{F} \boldsymbol{\Omega}$ of any logic input terminal to 10 ．Then the frequency inverter can use this terminal to perform fault reset．
3 When the frequency inverter is under remote control mode and $F \square \Omega=2$ ，fault reset is realized through remote communication devices．See Appendix A：Serial communication．

4 Switch off the frequency inverter and power it on again．
Note：When the fault is motor or frequency overload（ Ξ－ $\mathfrak{\Xi}$ or Ξ－Ξ ），frequency inverter reset function can not be performed if computed cooling time is not up．The computed cooling time is specified as：$\Xi \mathbf{\Xi} \boldsymbol{\Omega}, 30$ seconds after the fault occurs；$\Xi-\Xi, 120$ seconds after the the fault occurs．

8. APPENDIX A: SERIAL COMMUNICATION

Serial communication is the information exchange channel of the frequency inverter with upper computer. Through serial communication, users can use personal computer or industrial control equipment (such as PLC etc) as host to set frequency inverter (slave)'s running frequency or command, modify or read data, read working state and fault information etc and realize remote or centralized control of the frequency inverter .

The frequency inverter adopt RS-485 bus and Modbus protocol for serial communication.

A1. RS-485 bus

The hardware circuit of serial communication for the frequency inverter follows RS-485 standard and a RJ45 interface is provided. Here RS-485 two-wire wiring method is adopted. The array sequence of the corresponding pins of RJ45 interface is shown as below:

Figure A. 1 RJ45 front view
Table A. 1 Pin output signal allocation

Pin	Signal description
1	Reserved
2	Common port (signal ground \& power ground)
3	Reserved
4	A (RS-485)
5	B (RS-485)
6	Reserved
7	Common port (signal ground \& power ground)
8	

RS-485 two-wire wiring method is half-duplex serial communication. At the same moment the host and slave can not simultaneously transmit or receive data. Only one transmits data and another receives them.

RS-485 two-wire wiring method supports bus-type topological structure. At most 32 nodes can be connected to the same bus. Normally master-slave communication method is adopted in the RS-485 communication network, namely, one master commands as many as 31 slaves.

Under the circumstance of multi-computer communication or long-distance communication, it is suggested to connect the signal ground of the master station with the common port of the frequency inverter to raise the antinterference ability of communication.

A2. Modbus protocol

Modbus is a master-slave communication protocol. The master governs the whole communication process. Only when the master sends command to the slave, the slave executes the actions or/and send feedback information to the master. Otherwise the slave performs no operation and the slave can not communicate with each other directly.

There are two kinds of dialogues between the master and slaves:
(1) Point-to-point: Master sends command individually to a certain slave which executes action or/and sends feedback information.

When the master command is correct, the slave executes corresponding actions and transmits feedback of result information to the master.

When the master command is false, the slave transmits feedback of error information to the master but executes no actions.
(2) Broadcast mode: The master sends command to all slaves which execute action but send no feedback information.

Modbus protocol has two kinds of transmission patterns: Modbus RTU and Modbus ASCII. series frequency inverter supports Modbus RTU.

A2.1 Description of Modbus-RTU message format

When the Modbus-RTU mode is used for communication, the communication information (message) is represented directly with hexadecimal code (1-9, A-F). Two hexadecimal codes form one byte. The message format is shown as below:

Figure A. 2 Modbus Message Format
As shown in Figure A.2, during the communication process, the master and slave determine the start and end of Modbus message according to time interval of at least 3.5 characters. The message includes the complete data information to be transmitted: in the sequence of slave address, command code, data and CRC code. Its length varies with the change of the command code.

The message of Modbus-RTU is classified into three types and two formats:

1) Request (Interrogation) message: Command request message transmitted by master to slave;
2) Normal response message: The slave's feedback message when the master's command is correct.
3) Error response message: The slave's feedback message when the master's command is false / invalid.
4) and 2) have the same format, while 3) adopts other format.
1. Format of request message and normal response message.

Table A. 2 Format of request message and normal response message

Number	Name	Function
1	Slave address	Configured from 0 to 247 All slaves execute command but provide no feedback information; If slave address is set to 1~247, the dialog is point-to-point mode. All address-matching slaves execute command and provide feedback information. Under the point-to-point mode, when the matching slave responses, it sends back the slave address of itself.
2	Command code	- The frequency inverter supports part of command codes of Modbus protocol. - All slaves execute command code and the matching slave responses code include: (1) 03 H :Read one word (2 bytes) (2) $06 \mathrm{H}: W$ Wite one word (2 bytes) - During error response, the feedback command code of the slave $=$ the request command code of the master +80 H .
3	Data	- This part is the main content of communication and the core of data exchange. Its content and length vary with the variation of the command codes. See the following concrete descriptions of every command code.
4	CRC code	- Cyclical redundancy check (CRC) code is used for error detection of received data done by the receiving equipment and for judging whether the received data are correct. Please refer to "A2.3 Cyclical redundancy check (CRC)" for generation of CRC code. Note: CRC code first sends low bytes then high bytes. Except this, all messages of Modbus-RTU adopt the transmission sequence of "high bytes first - then low bytes".

A2.2 Detailed message description of different commands

A2.2.1 Read N words (2*N bytes) -- command code 03H

1. Master request message

Table A. 3 Command code 03H host query message format

Slave address	Command code	Communication address		Read word number		CRC code	
1 byte	1 byte	2 bytes		2 bytes		2 bytes	
		High byte	Low byte	High byte	Low byte	High byte	Low byte
	03 H			00 H	01 H		

1) Slave address and CRC code: See "Table A.2".
2) Command code: 03 H , request to read N words ($2 * \mathrm{~N}$ bytes) of the slave machine. Notice that N is at most 5 .
3) Communication address: The address of read data. This is not the real physical address for data storage, but a number corresponding to the data. Every control, state or monitoring parameter of the frequency inverter corresponds to a communication address. See "A2.5 Communication parameter".
4) Read word number: The length of the read data with the word (2 bytes) as the count unit. When current request asks for reading one word, it is set to 0001 H .
2. Message of slave normal response

Table A. 4 Command code 03 H of slave machine normal reply message

Slave address	Command code	Read bytes number	Read bytes number 2		...	Read bytes number N		CRC code	
	1 byte	1 byte	2 bytes			2 bytes		2 bytes	
1 byte			High byte	Low byte		High byte	Low byte	High byte	Low byte
	03H				\cdots				

1) Slave address and CRC code: See "A2.2".
2) Command code: 03 H . The same as the master request command code.
3) Read word number: The length of the read data with byte as the count unit. When current master requests to read one word, set read byte number transmitted from the slave to 02 H .

Note: The count unit of the length of the read data is different from that of request message.
4) Read data: Data corresponding to the communication address in the request message.

Note: Read data firstly sends high byte then low byte in an opposite direcition to CRC code.
3. Slave error response message

Table A. 5 Slave error response message of Command code 03H

Slave address	Command code	Error code	CRC code	
1 byte	1 byte	1 byte	2 bytes	
			Low byte	High byte
	83 H			

1) Slave address and CRC code: See "A2.2".
2) Command code: 83 H . It is $=03 \mathrm{H}+80 \mathrm{H}$.
3) Error code. For detail see "A2.4 Error code".
4) Example: Read upper limit frequency.

Master request message: 01030008000105 C 8
Normal response message: 0103021388 B5 12 (Suppose that current upper limit frequency is 50 Hz)
Error response message: 0183030131 (Suppose that read word number is altered from 0001 to 0002)

A2.2.2 Write one word (2 bytes) - Command code 06H

1. Master request message

Table A. 6 Format of master request message

Slave address	Command code	Communication address		Write data		CRC code	
1 byte	1 byte	2 bytes		2 bytes		2 bytes	
		High byte	Low byte	High byte	Low byte	Low byte	High byte
	06 H						

1) Slave address and CRC code: See "Table A.2".
2) Command code: 06 H . Request to write 1 word (2 bytes) of the slave.
3) Communication address: The address of read data. This is not the real physical address for data storage, but a number corresponding to the data. Every control, state or monitoring parameter of the frequency inverter corresponds to a communication address. See "A2.5 Communication parameter".
4) Write data: Request data written by the slave.
2. Slave normal response message

Table A. 7 Slave normal response message

Slave address	Command code	Communication address		Write data		CRC code	
1 byte	1 byte	2 bytes		2 bytes		2 bytes	
		High byte	Low byte	High byte	Low byte	Low byte	High byte
	06 H						

Slave's normal response message is the same as the master's request message.
3. Slave error response message

Table A. 8 Format of slave error response message

Slave address	Command code	Error code	CRC code	
1 byte	1 byte	1 byte	2 bytes	
			Low byte	High byte
	86 H			

1) Slave address and CRC code: See "Table A2.2".
2) Command code: 86 H . It is $=06 \mathrm{H}+80 \mathrm{H}$.
3) Error code. For detail see "A2.4 Error code".
4. Example: To write upper limit frequency

Master request message: 0106000813240523 (Suppose that the set upper limit frequency is 49 Hz)
Normal response message: 0106000813240523
Error response message: 01860443 A3 (Suppose current writing operation cannot be performed)

A2.2.3 Write multiple words (2*N bytes) -- command code 10H

1.Host query message

Table A. 9 Format of host query message in command code 10 H

Slave address	Command code	Communicat ion address		Write words		Write data	Write 1		\cdots	Write N		CRC code	
	1 byte	2 bytes		2 bytes		1 byte	2 bytes		\cdots	2 bytes		2 bytes	
1 byte		$\begin{aligned} & \text { Low } \\ & \text { byte } \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { byte } \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { byte } \end{aligned}$	High byte		$\begin{aligned} & \text { Low } \\ & \text { byte } \end{aligned}$	High byte	\cdots	$\begin{aligned} & \text { Low } \\ & \text { byte } \end{aligned}$	High byte	Low byte	High byte
	10H								\cdots				

(1) Slave address and CRC check code: see Table A. 2.
(2) Command code: $10 \mathrm{H}, \mathrm{N}$ words (2*N bytes) of the request write slave machine. Notice that N is at most 5 .
(3) Communication first address: the first address to write data.The address is not the actual physical address of the data, but a number corresponding to the data.Each control, state and monitoring parameter of the converter corresponds to a communication address, see "A2.5 Communication Parameters" for details.
(4) Write words: the number of slave words written.
(5) Number of bytes written: Number of bytes written by slave = number of words written *2.
(6) Write data $1 \sim$ write data N : The data requested to be written from the machine.
2.The slave answers the message normally

Table A. 10 Command code 10 H for slave normal reply message format

Slave address	Command code	Communication address	Write data		CRC code	
1 byte	1 byte	2 bytes	Low byte	High byte	Low byte	High byte
					Low byte	High byte
	10 H					

(1) Slave address and CRC check code: see Table A.2.
(2) Command code: 10 H , which is consistent with the request command code of the host.
(3) Communication first address: The same as the communication first address of the host.
(4) Write words: the same as the number of words written by the host.
3.Slave machine error response message

Table A. 11 Format of slave error response message in command code 10 H

Slave address	Command code	Error code	CRC code	
1 byte	1 byte	2 byte	2 bytes	
			Low byte	
	90 H			

(1) Slave address and CRC check code: see Table A. 2.
(2) Command code: 90 H , namely the sum of 10 H and 80 H .
(3) Error code: see "A2.4 Error code" for details.
4.Example: Write five consecutive parameters starting with the Fir parameter

Host query message: 01100300050 A 00010003000400010000 0B 9D AE
(Supposer
Normal reply message: 01100300000500 4E
Error response message: 0190030 O 01 (assuming incorrect data setting)

A2.3 Cyclic redundancy check (CRC)

Modbus-RTU's communication message uses cyclic redundancy check (CRC) for transmission error check.
During each communication, the sender computes CRC code of transmitted data according to CRC rules, then sends the data by attaching the CRC code to them; After receiving the data, the receiver re-computes the CRC code according to the same rules. The computed content does not include the received CRC code. The reciever compares the re-calculated CRC code with the received code. If they are not the same, the transmitted data are determined to be false.

The frequency inverter adopts CRC16 rule for message check of serial communication. Every CRC code consists of 2 bytes, including 16-bit binary value. The calculation is as follows:

1) Initialize CRC register (16 bit) to 0xFFFF;
2) Perform XOR to the first byte (slave address) and the low 8 bits of the register, and then put the computed result back to CRC register;
3) Make a right shift by 1 bit to the content of CRC register and fill in the highest bit with 0 ;
4) Check the shift-out bit after right shift;

- If the shift-out bit is 0 , repeat 3), namely, make another right shift;
- If the shift-out bit is 1 , make XOR to CRC register and $0 \times A 001$, and put the computed result back to the CRC register;

5) Repeat steps 3) and 4) until 8 right shifts are made. Implement the same procedure to all the 8 -bit data;

Repeat steps 2) ~5) to implement the processing of the next byte in the message;
7) After all the bytes in the message are computed according to the above procedures, the content in the CRC register is the CRC code.

After the CRC code is acquired through the above-mentioned method, attach it to the transmitted data and send them. It is necessary to exchange the high and low bytes of the CRC code, namely, to send the low byte firstly and then the high byte.

There are two methods to compute CRC code with software: table look-up and on-line computation. Computation speed of the table look-up is fast but its table data occupy considerable space; On-line computation method requires no table data. It saves space but needs much time. Suitable computation method is selected according to concrete circumstance during application.

A2.4 Error code

When the slave is not able to implement master's request, the slave gives feedback of corresponding error code to indicate cause of the current error. Refer to the following table for the concrete meaning of error code.

Error code	Description
01	Command code error
	－Command code other than 03 H 06 and 10H is set in the request message
02	Communication address error
	－Visited communication address does not exist． －The register corresponding to the communication address does not permit performance of the action demanded by the currrent command code．
03	Data setting error
	－Written data exceeds the allowable range of the register． －Improper setting of certain parameter in the request message．
04	Unable to continue implementing the master＇s request．
	－Error occurs during the process of writing data． －Currently the register corresponding to the communication address does not permit performance of the action demanded by the command code．

A2．5 Communication parameter

1．Control parameter
Control parameters are edited through serial communication in order to realize frequency inverter＇s function setting，running frequency setting，start／stop control and logic／analog output setting．

1）Basic parameters
Basic parameters consist of 10 groups：F0－f9．They are used to control the function setting of the frequency inverter．Their detailed description，communication addresses and value ranges are shown in＂ 5 ．Detailed description of parameters＂．

Note：The communication address of the basic parameter corresponds to its display code．However，it is required to change F at the highest bit to 0 ；

Example：The display code of parameter＂Running command selection＂is Fir 6 communication address is 0001；

Another example：The display code of parameter＂Default keyboard panel display value＂is FTロコ，so the corresponding communication address is 0702.

2）Communication control word（Communication address：F月5）
3）Communication running frequency setting（Communicaiton address：F月昌）
Table A． 13 Detailed description of communication control word

Bit	Description of function	$\mathbf{0}$	$\mathbf{1}$	Default value
0	JOG	NO－JOG	Jog frequency	0
1	Forward／reverse rotation	Forward rotation	Reverse rotation	0
2	Running／stop	Stop	Running	0
3	Free stop	No action	Free stop	0

Bit	Description of function	$\mathbf{0}$	$\mathbf{1}$	Default value
4	Emergency stop	No action	Emergency stop	0
5	Fault reset	No action	Reset	0
6	Given frequency by communication	Disable	Enable	0
7	Given code by communication	Disable	Enable	0
8	Multi-speed 1	OFF	ON	0
9	Multi-speed 2	OFF	ON	0
10	Multi-speed 3	OFF	ON	0
11	Multi-speed 4	OFF	ON	0
12	Motor parameter switch	1nd Motor Parameter	2nd Motor Parameter	0
13	PID control Disabling	Enabling PID control	Disabling PID control	0
14	Acceleration/ deceleration curve switch	Acceleration/ deceleration curve 1	Acceleration/ deceleration curve 2	0
15	DC braking	No DC braking	DC braking start	0

Table A. 14 Communication running frequency setting

| Bit | Description of function | Default |
| :---: | :--- | :---: | :---: |
| $0-15$ | Running frequency data of communication setting.
 $50 \mathrm{~Hz} \rightarrow(50 \mathrm{~Hz}) \times 100=5000 \rightarrow 1388 \mathrm{~Hz}$
 It is if setting: 50 Hz , write 1388 H in the FA08 address | 0.0 |

4) Communication analog output setting (Communicaiton address: FA16)

Table A. 15 Communication analog output setting

Bit	Description of function	Lower limit	Upper limit	Default
$0-15$	Analog output data of communicatioin setting (in correspondence with analog output function 10)	0 $(0000 \mathrm{H})$	1023	0

2. Monitoring parameter

Monitoring parameters can be read through serial communication to see the running state of the converter. The following table is the description of monitoring parameters.

Table A. 16 Monitoring parameters 1

No.	Communication address	Description of function	Unit	Note
1	FD03	Real-time running state	-	See table A.18 for details
2	FD12	Real-time running frequency	0.01 Hz	
3	FE18	Actual output frequency	0.01 Hz	
4	FE09	DC bus input voltage	0.01%	

No.	Communication address	Description of function	Unit	Note
5	FE10	Output voltage	0.01%	
6	FE08	Output current	0.01%	
7	FE20	Output torque	0.01%	
8	FE29	Output power	0.01 kW	
9	FE50	Motor speed (estimated)	-	See Table A.19 for details
10	FE11	Logic input	-	See Table A.20 for
details				

Table A. 17 Monitoring parameter specification 2

No.	Communication address	Description of function	Unit	Note
1	E000	Real-time running state	-	See table A. 18 for details
2	E001	Real-time running frequency	0.01 Hz	
3	E002	output current	0.01A	
4	E003	Fault monitoring	-	See Table A. 21 for details
5	E004	PID given		
6	E005	PID feedback		
7	E006	output voltage	V	
8	E007	Motor speed (estimated)	1 rpm	
9	E008	Output torque	0.01\%	
10	E009	DC bus input voltage	V	
11	E010	Input power	0.01 kW	
12	E011	Output power	0.01 kW	
13	E012	Input power accumulates	W.h	
14	E013	Output power accumulation	W.h	

No.	Communication address	Description of function	Unit	Note
15	E014	Cumulative running time	h(小时)	
16	E015	Logic input	-	See Table A.19 for details
17	E016	Logic output	-	See Table A.20 for details
18	E017	Analog input Al1 (10-bit precision)	-	Range (0- $1023)$
19	E018	Analog input Al2 (10-bit precision)	-	Range (0- $1023)$

Table A. 18 Real-time running state monitoring

Communication address	Description of function		
FD03	Real-time running state monitoring		
Bit	Description	0	1
0	Reserved	-	-
1	Fault	No fault	Tripping
$2-8$	Reserved	-	-
9	Forward/reverse rotation	Forward rotation	Reverse rotation
10	Running/stop	Stop	Running
$11-15$	Reserved	-	-

Table A. 19 Logic input state monitoring

Communication address	Description of function		
FE11	Logic input state monitoring		
Bit	Description	0	1
0	Terminal L1	OFF	ON
1	Terminal L2	OFF	ON
2	Terminal L3	OFF	ON
3	Terminal L4	OFF	ON
4	Terminal L5	OFF	ON
5	Terminal L6	OFF	ON
6	Terminal L7 or As Al1 during logic input	OFF	ON
7	Terminal L8 or As Al1 during logic input	OFF	ON
$8-15$	Reserved	-	-

Table A． 20 Logic Output state monitoring

Communication address	Description of function		
FE12	Logic output state monitoring		
Bit	Description	0	1
0	Terminal LO1－CLO1	OFF	ON
1	Relay T2	OFF	ON
2	Relay T1	OFF	ON
$3-15$	Reserve	-	-

Table A． 21 Fault monitoring

Communication address	Description of function	
FC39	Fault monitoring	
Value	Corresponding fault	Panel display
0000H	No fault	nErr
0001H	Acceleration overcurrent	E－6：
0002H	Deceleration overcurrent	E－I
0003H	Constant speed overcurrent	E－6
0008H	Input phase failure	E－Hi
0009H	Output phase failure	$E-42$
000AH	Acceleration overvoltage	E－：
000BH	Deceleration overvoltage	E－i
000CH	Constant speed overvoltage	E－i
000DH	frequency inverter overload	$E-\Xi ;$
000EH	Motor overload	E－コこ
0010H	Overheat tripping	E－24
0011H	Emergency tripping	$E-43$
0012H	EEPROM error 1 （write error）	E－3i
0013H	EEPROM error 2 （Read error）	E－3i
0014H	EEPROM error 3 （Internal error）	E－3i
0018H	External communication error	E－ヨコ
001AH	Current detection fault	E－34
001EH	Undervoltage	E－iz

9. APPENDIX B: CONCISE PARAMETER LIST

[-FO-]					
NO.	Parameter Name	Setting Range	default	WRT	User setting
F808	Operation frequency of keypad	F0日G~FO日	0.0	-	
F00:	V/F control mode selection	0: V/F constant 1: Variable torque 2: Sensor-less vector control 3: Energy saving	0	-	
F802	Command mode selection 1	0: Terminal board 1: Keypad 2: Serial communication	1	-	
F083	Frequency setting mode selection 1	0 : Built-in potention meter 1: Al1 input 2: Al2 input 3: Keypad(Given frequency) 4: Serial communication (Given frequency) 5: UP/DOWN setting 6: Al1+Al2 7: PID setting of keypad (PID given) 8: Simple PLC running	3	-	
5084	Command mode selection 2	0 : Terminal board 1: Keypad 2: Serial communication	0	-	
F005	Frequency setting mode selection 2	0 : Built-in potention meter 1: Al1 input 2: Al2 input 3: Keypad(Given frequency) 4: Serial communication (Given frequency) 5: UP/DOWN speed given 6: Al1+Al2 7: PID setting of keypad (PID given) 8: Simple PLC running option	2	-	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F006	Frequency／PID given source conversion	0：Switch between $F 003$ and F005 1：Switch is disabled 2：Switch between $F 9$ and FGE：selected frequency ／PID source 3：Switch between $F 0.05$ and $F B E$ ；selected frequency ／PID source	0	－	
$F 007$	Maximum frequency	$30.0 \sim 400.0 \mathrm{~Hz}$	50.0	－	
F00日	Upper limit frequency	$0.5 \mathrm{~Hz} \sim F 607$	50.0	\bigcirc	
F009	Lower limit frequency	$0.0 \mathrm{~Hz} \sim$ F 008	0.0	\bigcirc	
F0 60	Acceleration time 1	0．1～3200 s	varies by model	\bigcirc	
FO ：	Deceleration time 1	0．1～3200 s	varies by model	\bigcirc	
Fn：	PWM carrier frequency	$1.5 \mathrm{k} \sim 12.0 \mathrm{kHz}$	varies by model	\bigcirc	
F3：3	Carrier frequency control mode selection	0 ：not reduced automatically 1：reduced automatically	1	－	
F84	Random PWM mode	0：Disable． 1：Enable．	0	－	
F3：5	Automatic acceleration／deceleration	0 ：Disabled（manual）． 1：Automatic（at acceleration \＆ deceleration） 2：Automatic（only at acceleration）	0	－	
FG：	Factory reserved	－	－		
F．817	Parameter setting mQDo function	0 ：Default value． 1：2－wire control（Negative logic mode，ramp stop）． 2：3－wire control（Negative logic mode，ramp stop）． 3：External input UP／DOWN setting（Negative logic mode， slowdown stop）． 4 ～16：Factory reserved 17：PID sleep \＆Wake Control Fgit＝75．0\％FG 15＝5．0s FG（G＝ 38.0 Hz ） 18：PID basic control（F日に 19：Factory reserved	0	－	
F8：	Factory reserved	－	－		
F020	Factory reserved	－	－		

NO．	Parameter Name	Setting Range	default	WRT	
F念	Primary and secondary frequencies／PID are given	0 ：Single channel given 1：F0日 $5+5085$ 	0	\bigcirc	
F日ゴ心	F0日S frequency given coefficient	0．0～100．0\％	100.0 \％		
F気ご	F念凫 frequency bias given	$0.0 \mathrm{~Hz} \sim 400.0 \mathrm{~Hz}$	0.0 Hz		
F念号	Lower limit selection and F号	0～5	0		
F699	Factory reserved	Same as F9\％			

［－F1－］					
NO．	Parameter Name	Setting Range	default	WRT	User setting
F 188	Auto－tuning	0 ：Auto－tuning disabled 1：Application of individual settings of FE日 2：Auto－tuning enabled	0	\bullet	
	Base frequency 1	$25.0 \sim 400.0 \mathrm{~Hz}$	50.0	\bullet	
F1日E	Base frequency voltage1	50～660 V	varies by model	\bullet	
F183	Motor rated current	0．1～200．0 A	varies by model	\bullet	
F 184	Motor rated speed	100～15000 rpm	varies by model	\bullet	
F185	Motor no－load current	10．0～100．0\％	varies by model	\bullet	
F96	Motor electronic thermal protection level 1	varies by model	varies by model	\bigcirc	
F1星	stall prevention level 1	varies by model	varies by model	\bullet	
	Base frequency 2	$25.0 \sim 400.0 \mathrm{~Hz}$	50.0	\bullet	
F989	Base frequency voltage 2	50～660V	varies by model	\bullet	
Fi 18	Motor electronic－thermal protection level 2	varies by model	varies by model	\bigcirc	
Fi i	Stall prevention level 2	varies by model	varies by model	\bigcirc	
$F 11 \mathrm{I}$	factory reserved	－			
Fi： 3	factory reserved	－			
$F: 14$	factory reserved	－			
F1： 5	factory reserved	－			

NO．	Parameter Name	Setting Range	default	WRT	User setting
	Default setting	0：－ 1：Standard default setting （Initialization） 2：Save user－defined parameters 3：Call user－defined parameters 4：Trip record clear 5：Cumulative operation time clear 6：Cumulative fan operation time record clear 7：Initialization of type information 8：P－type rating． 9：G－type rating．	0	\bullet	

［－f2－］					
NO．	Parameter Name	Setting Range	default	WRT	User setting
FEO	Supply voltage correction	0 ：Supply voltage uncorrected，output voltage limited． 1：Supply voltage corrected，output voltage limited． 2：Supply voltage uncorrected，output voltage unlimited． 3：Supply voltage corrected，output voltage unlimited．	3	－	
	Voltage boost 1	0．0～30．0\％	varies by model	－	
FEO3	Torque boost	0．0～30．0\％	varies by model	\bigcirc	
F204	Slip frequency gain	0～150\％	50	\bigcirc	
FE0S	Exciting current coefficient	100～130	100	－	
F905	Voltage boost 2	0～30\％	varies by model	－	
FE07	Speed control response coefficient	1～150	40	－	
F908	Speed control stability coefficient	1～100	20	－	
F909	Stall prevention control coefficient 1	10～250	100	－	
$F \Xi 6$	Stall prevention control coefficient 2	50～150	100	－	
Fこ i	Maximum voltage adjustment coefficient	90～120\％	104	－	
Fこ＇こ	Waveform switching adjustment coefficient	0．1～14kHz	14.0	－	
Fこ！	factory reserved				
Fこ：4	factory reserved				

NO．	Parameter Name	Setting Range	default	WRT	User setting
Fこイ5	factory reserved				
Fヨ1E	factory reserved				
Fヨi7	multipoint profile V／F patter	0 ：factory reserved． 1：factory reserved． 2：Enable multipoint profile V／F patter．	0	－	
$F \Xi 1 日$	point 1 output frequency （F1）	0～にご吕	10.0	－	
FI 19	point 1 output frequency voltage（V1）	0～100\％	20.0	\bullet	
Fロコロ	point 2 output frequency (f2)	ニコロートコロ	20.0	\bullet	
Fロコ	point 2 output frequency voltage（V2）	0～100\％	40.0	\bullet	
ーゴコ	point 3 output frequency （f3）		30.0	－	
トコココ	point 3 output frequency voltage（V3）	0～100\％	60.0	\bullet	

［－f3－］					
NO．	Parameter Name	Setting Range	default	WRT	User setting
F388	Al1 terminal function selection	0：Al1－analog input 1：Al1－contact input（Sink mode） 2：Al1－contact input（Source mode）	0	\bullet	
F39i	Input terminal function for LII	0 ：No function is assigned 1：Standby terminal 2：Forward run command 3：Reverse run command 4：Jog run mode 5：Acceleration／deceleration 2 pattern selection 6：Preset－speed command 1 7：Preset－speed command 2 8：Preset－speed command 3 9：Preset－speed command 4 10：Reset command 11：Trip stop command from external input device 13：DC braking command 14：PID control disabling 15：Permission of parameter editing 16：Combination of standby and reset commands 17：Frequency source switching to Al1 18：Combination of forward run and jog run	2	\bullet	
5393	Input terminal function for LI2		3	－	
F393	Input terminal function for LI3		0	－	
F394	Input terminal function for LI4		10	\bullet	

NO.	Parameter Name	Setting Range	default	WRT	User setting
F304	Input terminal function for LI4	19: Combination of reverse run and jog run 20: Frequency setting source switching 21: No. 2 Switching of V/F setting 22: No. 2 motor switching 23: Frequency UP signal input from external contacts 24: Frequency DOWN signal input from external contacts 25: Frequency UP/DOWN cancellation signal input from external contacts 26: inversion of trip stop command from external device 27 Thermal trip stop signal input from external device 28: inversion of thermal trip stop signal input from external device 29: Forced switching from remote to local control 30: Operation holding (stop of 3 -wire operation) 31: Forced switching of command mode and terminal board command 32: Display cancellation of the cumulative power amount (kWh) 33: Fire-speed control seef419 34: Coast stop (gate off) 35: Inversion of Reset 36: Forced switching of stall prevention level 2 37: PID control integral value clear PID control integral value clear 38: inversion of PID error signal 39: Forward running command + Acc\&Dec curve 2 40: Reverse running command + Acc\&Dec curve 2 41: Forward running command + Multi-speed section 1 42: Reverse running command + Multi-speed section 1 43: Forward running command + Multi-speed section 2 44: Reverse running command + Multi-speed section 2 45: Forward running command + Multi-speed section3 46: Reverse running command + Multi-speed section 3 47: Forward running command + Multi-speed section 4	10	-	

NO.	Parameter Name	Setting Range	default	WRT	User setting
F304	Input terminal function for LI4	48: Reverse running command + Multi-speed section 4 49: Multi-speed section 1 + Acc\&Dec curve 2 50: Multi-speed section 2 + Acc\&Dec curve 2 51: Multi-speed section 3 + Acc\&Dec curve 2 52: Multi-speed section 4 + Acc\&Dec curve 2 53: Forward running command +Multi-speed section 1+ Acc\&Dec curve 2 54: Reverse running command +Multi-speed section 1+ Acc\&Dec curve 2 55: Forward running command +Multi-speed section 2+ Acc\&Dec curve 2 56: Reverse running command +Multi-speed section 2+ Acc\&Dec curve 2 57: Forward running command +Multi-speed section 3+ Acc\&Dec curve 2 58: Reverse running command +Multi-speed section 3+ Acc\&Dec curve 2 59: Forward running comman +Multi-speed section 4+ Acc\&Dec curve 2 60: Reverse running command +Multi-speed section 4+ Acc\&Dec curve 2 61: UP/DOWN speed clean up+ fault reset 62: Running permission+ Forward running command (only 2-wire control) 63: Running permission+ reverse running command (only 2 -wire control) 64: Acc\&dec curve 3 65: Acce/Dece curve 3 + Forward running command 66: Acce/Dece curve 3 + Reverse running command 67: Command source switch 68: Command source + frequency source switch 69: Three-wire control stop reverse 70: Reset when simple PLC stops 71: Simple PLC time out 72: Simple PLC pause 73/74: PID control + frequency given source switch 75:(UP/DOWN) stop speed clearance	10	-	

NO．	Parameter Name	Setting Range	default	WRT	User setting
$F 305$	Al1 voltage－current input selection	$0: 0 \sim 5 \mathrm{~V}$ voltage signal input． 1：0～10V voltage signal input． 2：0－20mA（4－20mA）current signal input．	0	－	
$F 365$	sink／soruce mode selection	0 ：Source（Positive）logic terminal mode． 1：Sink（Negative）logic terminal mode	1	\bullet	
$F 367$	AO voltage－current output selection	0 ：Current signal output． 1：Voltage signal output．	1	－	
F308	Input terminal function of Al1	F30 i～F304	0	－	
$F 309$	Always－active terminal selection 1	F30 1～F304	1	－	
F3 6	Always－active terminal selection 2	F30 i～F 304	0	－	
Fヨi	Output terminal function A of LO1－CLO1	F3：5	4	－	
$F ヨ 12$	Output terminal function B of LO1－CLO1	F3：5	255	－	
F3： 3	Al2 terminal function selection	$\begin{aligned} & \hline \text { 0: Al2 - analog input } \\ & \text { 1: A12 - contact input (Sink) } \\ & \text { 2: A12 - contact input (Source) } \end{aligned}$	0	\bullet	
F3：4	Input terminal function of AI2	F30 i～F 304	0	－	
F3： 5	Output terminal function A of T1（T1A－T1B－T1C）	0 ：Output frequency higher than lower limit frequency 2：Output frequency equals to upper limit frequency 4：Output frequency is higher or equal to Fヨシ7 6：（set frequency－Fヨコロ）＜output frequency＜（set frequency＋Fヨコロ） 8：（Fヨヨロートヨヨ）＜output frequency＜ （Fヨコロ＋Fヨヨヨ） 10：Output frequency higher or equal to 12：F． given speed＝Al1 signal given speed＝Al2 signal 16：Al1＇s value higher or equal to f 340 +534 i 18：AI2＇s value is higher or equal to トコムゴトゴココ	40	－	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F3：5	Output terminal function A of T1（T1A－T1B－T1C）	20：Al2 is the speed given source 22：Frequency inverter forward motor power supply（acceleration，deceleration， constant speed or DC braking） 24：Ready for running of the frequency inverter（running permission and running command available） 26：Motor reverse running 28：Under local mode for frequency inverter 30：Fault happened in the frequency inverter 32：Evaluated motor torque is at F H level time is still less than $F=4$ it set value． 34：Motor current is less than $F 48$ and its lasting time is over 5416 setting． 36：Fault occurred and could not reset． 38：Fault occurred but it could reset． 40：Fault occurs in the frequency inverter 42：Alarm occurs 44：Motor heating status has reached 50% of motor overload fault level． 46：DC braking resistor status has reached 50% DC braking resistor overload fault level． 48：Evaluated motor torque reaches Fッ はご 70% 50：Run time \geq F $-\boldsymbol{G}$ set value 52：The equipment sends maintenance alarm warning．（Fan，PCB or capacitor needs replacement．） 54：PTC heating sensor needle has detected motor temperature reaching 60\％ of trip level． 56：Undervoltage alarm is valid． 58：Brake pull 60：In the process of motor acceleration process	40	－	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F315	Output terminal function A of T1（T1A－T1B－T1C）	62：In the process of motor deceleration 64：In the process of motor deceleration or acceleration 66：Heat sink temperature has reached alarm value 68：One PLC recycle completes 70：One PLC speed section completes 72：The inverter is ready to receive the running signal 74～79：unused 80：LI1 input is valid 82：LI2 input is valid 84：PID feedback pressure equal to or higher than $F \boxed{E} \boldsymbol{E}+F \Xi \Xi$ 86：PID feedback pressure equal to or 88～253：Unused 254：Relay constant output OFF 255：Relay constant output ON	40	\bullet	
Fヨ15	Output terminal logic selection of LO1－CLO1	0：And logic 1：Or logic	0	\bullet	
Fヨ17	LO1－CLO1 output delay	$0.0 \sim 60.0 \mathrm{~s}$	0.0	\bigcirc	
Fヨ1日	Relay 1 closing delay	$0.0 \sim 60.0 \mathrm{~s}$	0.0	－	
F319	External contact input－ UP response time	0．0～10．0 s	0.1	\bigcirc	
Fヨコ哭	External contact input－ UP frequency steps	$0.0 \mathrm{~Hz} \sim$ F 077	0.1	\bigcirc	
Fヨゴ	External contact input－ DOWN response time	$0.0 \sim 10.0 \mathrm{~s}$	0.1	\bigcirc	
Fコゴ建	External contact input－ DOWN frequency steps	$0.0 \mathrm{~Hz} \sim$ F昌 7	0.1	－	
トコココ	Initial up／down frequency	$0.0 \mathrm{~Hz} \sim$ F昌旦	0.0	\bigcirc	
Fコロー	Change of the initial up／down frequency	0／2／4：disabled 1／3／5：enabled	1	\bigcirc	
トコロら	Al1 input point 1 setting	0～100\％	0	\bigcirc	
Fヨコロ	Al1 input point 1 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	0.0	\bigcirc	
トコご	Al1 input point 2 setting	0～100\％	100	\bigcirc	
F3ロ日	Al1 input point 2 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	50.0	\bigcirc	
Fヨコロ	AI2 input point 1 setting	0～100\％	0	\bigcirc	
	Al2 input point 1 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	0.0	\bigcirc	

NO．	Parameter Name	Setting Range	default	WRT	User setting
Fヨコ！	Al2 input point 2 setting	0～100\％	50	\bigcirc	
Fヨココ	Al2 input point 2 frequency	$0.0 \sim 400.0 \mathrm{~Hz}$	50.0	－	
Fヨココ	Al1 input bias	0～255	varies by model	－	
Fヨコ4	Al1 input gain	0～255	varies by model	－	
$F 335$	Al2 input bias	0～255	varies by model	－	
$F 3 \exists 5$	Al2 input gain	0～255	varies by model	－	
Fヨ37	Low－speed signal output frequency	$0.0 \mathrm{~Hz} \sim F 007$	0.0	－	
F33日	Speed reach detection output frequency	$0.0 \mathrm{~Hz} \mathrm{\sim F} 0.07$	0.0	－	
F339	Speed reach detection band	$0.0 \mathrm{~Hz} \mathrm{\sim F} 007$	2.5	－	
$F 340$	Al1 input reach detection level	0～100\％	0	－	
F34：	Al1 input reach detection band	0～20\％	3	\bigcirc	
F342	AI2 input reach detection level	0～100\％	0	－	
F343	Al2 input reach detection band	0～20\％	3	－	
F344	Frequency command agreement detection range	$0.0 \mathrm{~Hz} \mathrm{\sim F} 0.7$	2.5	－	
$F 345$	Logic output／pulse train output selection（LO1－ CLO1）	0：Logic output 1：Pulse train output	0	－	
F345	Pulse train output function selection（LO－ CLO）	0 ：Output frequency 1：Output current 2：Set frequency（Before PID） 3：Frequency setting value（After PID） 4：DC voltage 5：Output voltage command value 6：Input power 7：Output power 8：AI1 Input value 9：AI2 Input value 10：Torque 11：Torque current 12：Motor cumulative load factor 13：Inverter cumulative load factor 14：PBR（braking reactor）cumulative load factor	0	－	

NO．	Parameter Name	Setting Range	default	WRT	User setting
$F 347$	Maximum numbers of pulse train	500～1600	800	－	
$F 348$	AO1 selection	0：Output frequency 1：Output current 2：Set frequency（betore PID） 3：Frequency setting value（after PID） 4：DC voltage 5：Output voltage command value 6：Input power 7：Output power 8：Al1 input 9：Al2 input 10：Torque 11：Torque current 12：Motor cumulative load factor 13：Inverter cumulative load factor 14：brake resistor cumulative load factor 15：Serial communication data 16：185\％proofread 17：150\％proofreading 18．100\％proofread	0	－	
$F 349$	AO1 gain adjustment	1～1280	varies by model	○	
$F 350$	Inclination characteristic of analog output	0：Negative 1：Positive	1	\bigcirc	
F35	Bias of analog output	0～100\％	0	\bigcirc	
Fヨコご	output frequency when $\mathrm{AO} 1=0 \mathrm{~V}$	$0 \mathrm{~Hz} \sim$ F．0念	0.0	\bigcirc	
F353	output frequency when $\mathrm{AO} 1=10 \mathrm{~V}$		0.0	\bigcirc	
F354	AO1 bias	0～255	128	\bigcirc	
$F 355$	Analog Output Voltage Bias Calibration（AO1）	F3n i～F3日 4 （15kW and above）	0	\bullet	
$F 351$	Input terminal function for LI6		0	\bullet	
$F 357$	Input terminal function for LI7		0	\bullet	
$F 35 日$	Input terminal function for LI8		0	\bullet	
$F 359$	Output terminal function A of T2	Seeトコ15	0	\bullet	
F35日	Relay 2 auxiliary functions	Seeトコ15	255	\bullet	
$F 351$	Output terminal logic selection of T2	0：And Logic（15kW and above） 1：Or Logic	0	\bullet	

NO.	Parameter Name	Setting Range	default	WRT	User setting
	Relay 2 closing delay	0~60.0s (15kW and above)	0.0	-	
F363	Input terminal active mode	8 bits - hexadecimal display, each option: 0 : Closure is valid 1: Disconnect effective			
F354	Logical input terminal filtering	0~200	0		
F365	Relay output 1 assistant function	F3: 5	255		
F35	Relay output 1 function logic relation	0~1	0		
F367	Terminal run detection selection at power on	0 : disable 1: enable	0		
F35日	Analog output signal type (AO2)	0 : Current signal output 1: Voltage signal output	1	\bullet	
F359	Analog output function function selection (AO2)	F348	0	\bigcirc	
$F 370$	Analog output current scaling (AO2)	1~1280	Based on machine model	\bigcirc	
F37	AO2 Analog output slope	0: Negative slope 1: Positive slope	1	\bigcirc	
$F \Xi 72$	AO2 Analog output bias	0~100\%	0	\bigcirc	
Fヨ73	Analog Output current Bias Calibration (AO2)	0~255	4	-	
F374	Percentage of AO monitored values	0~250\%	0	\bullet	
$F 375$	Relay 1 disconnect delay	0~60.0s	0.0	-	
F376	Relay 2 disconnect delay	0.0~60.0s	0.0	\bullet	

[-f4-]	Parameter Name	Setting Range	default	WRT	User setting
NO.	Pat	Retry selection	0: disabled $1 \sim 10$ times.	0	0
F4:	Electronic-thermal protection characteristic selection	0: Trip enable, stall disable (standard motor) 1: Trip enable, stall enable (standard motor) 2: Trip disable, stall disable (standard motor)	0	0	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F4星i	Electronic－thermal protection characteristic selection	3：Trip disable，stall enable（standard motor） 5：Trip enable，stall disable（forced cooling motor） 6：Trip enable，stall enable（forced cooling motor） 7：Trip disable，stall disable（forced cooling motor） 8：Trip disable，stall enable（forced cooling motor）	0	\bigcirc	
F4日	Motor 150\％－overload time limit	10－2400 s	300	\bigcirc	
F4星3	Emergency stop selection	0：Coast stop 1：Slowdown stop 2：Emergency DC braking	0	\bullet	
F484	emergency braking time	0．0－20．0 s	1.0	\bigcirc	
F495	Input phase failure detection	0 ：Disabled，No tripping． 1：Enabled	0	\bullet	
F496	Output phase failure detection mode selection	0：Disabled 1：At start－up（Only one time after power is turned on） 2：At start－up（each time） 3：During operation 4：At start－up＋during operation 5：Detection of cutoff on output side	0	\bullet	
F4昂	Small current trip／alarm selection	0：Alarm 1：trip	0	\bigcirc	
F48日	Small current detection current	0～100\％	0.00	－	
F499	Small current detection current hysteresis	1～20\％	10	\bigcirc	
F4 618	Small current detection time	0－255 s	0	－	
FHi	Over－torque trip／Overcurrent indication	0：Over－torque alarm（70\％） 1：Over－torque fault 2．Over－torque alarm（100\％） 3：Over－current alarm（70\％） 4：Overcurrent fault 5：Overcurrent alarm（100\％）	0	\bigcirc	
F4に	Over－torque detection level	0～250\％	130	\bigcirc	
F4： 3	Over－torque detection level hysteresis	0～100\％	10	\bigcirc	
F4 4	Over－torque detection time	0．0～10．0 s	0.5	\bigcirc	
F415	Overvoltage limit operation	0 ：Enabled．speed． 1：Disabled 2：Enabled（Quick deceleration）． 3：Enabled（Dynamic quick deceleration）．	2	\bullet	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F4：	Overvoltage limit operation level	100－150\％	130	－	
F4：7	Undervoltage trip／alarm selection	0 ：Alarm only（detection level below 60\％） 1：Tripping（detection level below 60% ）． 2：Alarm only（detection level below 50\％）	0	－	
F4：	Instantaneous power failure coast stop selection	0 ：disabled 1：factory reserved 2：Coast stop．	0	－	
F49	Forced fire－speed control function	0 ：Disabled． 1：Enabled．	0	－	
F430	Detection of output short－ circuit during start－up	0：Each time（standard pulse） 1：Only one time after power is turned on （standard pulse） 2：Each time（short－time pulse） 3：Only one time after power is turned on （short－time pulse）	0	－	
F4ご	Motor electric－thermal protection retention selection	0 ：disabled． 1：Enabled．	0	－	
F4ご	Al1 input loss	1～100\％	0	\bigcirc	
ト4ご	Activation of the frequency inverter during $4-20 \mathrm{~mA}$ signal loss	0：No measures． 1：Coast stop． 2：switch to Fallback speed． 3：Speed maintaining． 4：Slowdown stop．	0	－	
F4E4	Fallback speed	$0.0 \mathrm{~Hz} \sim$ F 007	0.0	－	
F4E5	PTC thermal selection	0 ：Disabled 1：Enabled（trip mode） 2：Enabled（alarm mode）	0	－	
F4E5	Resistor value for PTC detection	100－9999	3000	－	
F4E日	Cumulative operation time alarm setting	0．0－999．9 h（0．1 $=10$ hour）	610.0	－	
F4ご	frequency inverter trip retention selection	0：clearing 1：maintaining	0	－	
F430	Heat sink temperature reaches the alarm value	$0 \sim 100^{\circ} \mathrm{C}$	60	\bullet	
F43：	Analog output current scaling（AO1）	1～1280			
F4ヨコ	Analog Output current Bias Calibration（AO1）	0～255			
ト4ヨコ	Analog output voltage scaling（AO2）	1～1280			
F434	Analog Output Voltage Bias Calibration（AO2）	0～255			

[-55-]					
NO.	Parameter Name	Setting Range	default	WRT	User setting
F508	Auto-restart control selection	0: Disabled 1: At auto-restart after momentary stop 2: When turning standby (input terminal function $=1$) on or off 3: At auto-restart or when turning standby (input terminal function $=1$) on or off 4: At start-up 5~7: Factory reserved 8: DC braking and then start.	0	-	
F50:	auto-stop time limit for lower-limit frequency operation	$\begin{aligned} & 0.0 \text { disable } \\ & 0.1-600.0 \mathrm{~s} \end{aligned}$	0.1	-	
F503	Bumpless operation selection	0 : disabled. 1: enabled.	1	\bigcirc	
5503	Starting frequency setting	$0.5 \sim 10.0 \mathrm{~Hz}$	0.5	-	
5504	Operation starting frequency	$0.0 \mathrm{~Hz} \mathrm{\sim F} 967$	0.0	-	
F505	Operation starting frequency hysteresis	$0.0 \mathrm{~Hz} \mathrm{\sim F} 967$	0.0	\bigcirc	
$F 505$	DC braking starting frequency	$0.0 \mathrm{~Hz} \mathrm{\sim F} 967$	0.0	-	
$F 507$	DC braking current	varies by model	varies by model	-	
F50日	DC braking time	0.0~20.0 s	1.0	\bigcirc	
$F 518$	Acceleration/deceleration 1 pattern	0: Linear 1: S pattern 1 2: S pattern 2 3 : Elevator acceleration / deceleration curve	0	-	
Fs:	Acceleration/deceleration 2 pattern	0: Linear 1: S pattern 1 2: S pattern 2	0	-	
$F 512$	Acceleration/deceleration 3 pattern	0 : Linear 1: S pattern 1 2: S pattern 2	0	\bigcirc	
F5:3	Acceleration/deceleration 1 and 2 switching frequency	$0.0 \mathrm{~Hz} \mathrm{\sim} \mathrm{~F} 080$	0.0	-	
F5:4	Acceleration/deceleration 2 and 3 switching frequency	$0.0 \mathrm{~Hz} \mathrm{\sim} \mathrm{~F} 088$	0.0	-	
F5:5	Selecting an acceleration/deceleration pattern	1: Acc/Dec 1 2: Acc/Dec 2 3: Acc/Dec 3	1	-	

NO．	Parameter Name	Setting Range	default	WRT	User setting
FS：	S－pattern lower－limit adjustment amount	0～50\％	10	－	
FSi7	S－pattern upper－limit adjustment amount	0～50\％	10	－	
FS 6	Acceleration time 2	0．0～3200 s	20.0	－	
F5：9	Deceleration time 2	$0.0 \sim 3200 \mathrm{~s}$	20.0	\bigcirc	
F5こG	Acceleration time 3	$0.0 \sim 3200 \mathrm{~s}$	20.0	\bigcirc	
Fちこ	Deceleration time 3	$0.0 \sim 3200 \mathrm{~s}$	20.0	\bigcirc	
$F 5 こ る$	Reverse－run prohibition	0 ：Forward／reverse run permitted． 1：Reverse run prohibited． 2：Forward run prohibited．	0	－	
F5こう	stop type	0：Ramp shutdown 1：Free shutdown of keyboard 2： 2 line control free stop 3： 2 line control free stop	2	－	
F5こ5	Positive and negative operation is preferred	0 ：Forward＋reverse－\＆gt；reverse 1：forward＋reverse－\＆GT；downtime 2：Forward＋reverse－\＆GT；Let me give you the direction 3：Forward＋reverse－\＆GT；In the direction given by 4：Forward＋reverse－\＆GT；positive	1	－	
$F 5 こ 7$	regenerative braking selection	0：Disabled 1：Enabled（with resistor overload protection） 2：Enabled（without resistor overload protection）	2		
F5こ日	regenerative braking resistance	1．0～1000．0	20.0	－	
$F 5 こ 9$	regenerative braking resistor capacity	0．01～30．0 kW	0.12	－	
F530	Positive and negative dead zone time	0．0～25．0s	10	－	
F53	Acceleration／ deceleration S－curve upper limit 2	0～50 \％	10	－	
F5ヨコ	Acceleration／ deceleration S－curve lower limit 3	0～50 \％	10	－	
F533	Acceleration／ deceleration S－curve upper limit 3	0～50 \％	10	－	

［－66－］					
NO．	Parameter Name	Setting Range	default	WRT	User setting
F600	Prohibition of panel reset operation	0：Permitted 1：Prohibited	0	－	
F5日	Switching between remote control and Local control	0：Local control mode 1：remote control mode 2．JOG function is set with $F 700$	1	－	
F603	Password check／input	0～9999	0	\bigcirc	
F603	Current／voltage display mode	$\begin{aligned} & \text { 0: \% } \\ & \text { 1: A (ampere)/V (volt), } \end{aligned}$	1	－	
F604	Frequency free unit magnification	0 ：unit is Hz 0．01－200．0：free unit	0.00	－	
F6日	Factory reserved	－	0	－	
F606	Inclination characteristic of free unit display	0 ：Negative inclination（downward slope） 1：Positive inclination（upward slope）	1	－	
5607	Bias of free unit display	$0.00 \mathrm{~Hz} \sim 5007$	0.00	\bigcirc	
F60日	Free step 1 （pressing a panel key once）	Disabled： 0.00 Enabled： $0.01 \mathrm{~Hz} \mathrm{\sim}$ F 97	0.00	－	
F609	Free step 2 （panel display）	0 ：disabled 1～255：enabled	0	－	
F5： 0	Standard monitor display selection	0 ：Output frequency（ Hz （free）） 1：Frequency command（Hz（free）） 2：Output current（\％／A） 3：frequency inverter rated current（A） 4：frequency inverter load（\％） 5：Output power（kW） 6：Stator frequency（ Hz （free）） 7：communication data display 8：Output speed 9：Communication counter 10：Normal communication counter 11：Stop－given frequency（ 59 $=0$ ）／given PID（ $F 9 \square \neq 0$ ）， Run－output frequency	0	－	
FS：	panel running order clear selection	0：clear 1：keep	1	－	
F5：3	Panel operation prohibition（F000）	0 ：Permitted 1：Prohibited	0	－	
F5：3	Prohibition of panel operation（RUN／STOP keys）	0 ：Permitted． 1：Prohibition．	0	－	
F5：4	Prohibition of panel emergency stop operation	0：Permitted． 1：Prohibition．	0	－	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F5：	Integral output power retention selection	0：（clear） 1：（memory）	1	－	
F6：7	Integral output power display unit selection	0： 1 kWh ．1： 10 kWh ． 2：100kWh．3： 1000 kWh ．	varies by model	－	
F5：${ }^{\text {P }}$	Search and resetting of changed parameters selection	0 ：disable 1：enable	0	－	
F619	factory reserved	Frequency converter internal temperature monitoring 1			
F6こ0	factory reserved	Frequency converter internal temperature monitoring 2			
Fロご	LCD contrast control	15～40	25		
Fロご	factory reserved				
F6こコ	Bit0：Fan self－running	0 ：The fan works when the converter is running 1．The fan works when the inverter is powered on	0	－	
	Bit1：Positive power monitoring	0 ：Monitoring both positive and negative power 1：Monitor only positive power			
F6\％	Keyboard panel displays 2		2	－	
	Quick Monitoring 1	Same as F5： 0			
F6こ5	Keyboard panel displays 3	Same as Fic	1	－	
	Quick Monitoring 2	1～8：see F与： 9：PID is given 10：PID feedback			
F6ES	Keyboard panel displays 4	Same as F\％${ }^{\text {S }}$	5	－	
	Quick Monitoring 2	1～8：seef 9：PID is given 10：PID feedback			
FEこ 7	Relay output－PID feedback check out	0．00～99．99	0.00		
F6こG	Relay output－PID feedback to detect bandwidth	0．00～99．99	0.00		
F6こ9	Factory reserved				

［－77－］					
NO．	Parameter Name	Setting Range	default	WRT	User setting
F700	JOG key function setting	0～6	5	\bigcirc	
F76：	jog run frequency	$0.0 \sim 20.0 \mathrm{~Hz}$	5.0	\bigcirc	
F703	Jog stopping pattern	0 ：Slow down stop． 1：coast stop． 2：DC braking．	0	－	
5703	Jump frequency 1	$0.0 \mathrm{~Hz} \sim F 507$	0.0	\bigcirc	
F764	Jumping width 1	$0.0 \sim 30.0 \mathrm{~Hz}$	0.0	\bigcirc	
$F 765$	Jump frequency 2	$0.0 \mathrm{~Hz} \sim \mathrm{~F} 0.07$	0.0	－	
$F 706$	Jumping width 2	$0.0 \sim 30.0 \mathrm{~Hz}$	0.0	\bigcirc	
$F 767$	Jump frequency 3	$0.0 \mathrm{~Hz} \sim \mathrm{~F}$ OG 7	0.0	－	
F76日	Jumping width 3	$0.0 \sim 30.0 \mathrm{~Hz}$	0.0	\bigcirc	
$F 709$	Braking mode selection	0～3	0	－	
F76	Release frequency	F50 $3 \sim 20.0 \mathrm{~Hz}$	3.0	\bigcirc	
F7：	Release time	0～25．0s	0.5	\bigcirc	
FTiz	Creeping frequency	F503 ${ }^{\text {a }}$ 20．0Hz	3.0	－	
F7：3	Creeping time	0～25．0s	1.0	\bigcirc	
F7，4	Droop gain	0～100\％	0	\bigcirc	
F7：5	Droop insensitive torque band	0～100\％	10	－	
F7： 5	Preset－speed 1	F009～F00日	3.0	\bigcirc	
F767	Preset－speed 2	F00G～FO0日	6.0	－	
F7：	Preset－speed 3	F0日g～F00日	9.0	\bigcirc	
F719	Preset－speed 4	F009～F008	12.0	\bigcirc	
F7E日	Preset－speed 5	F009～F00日	15.0	－	
FTE）	Preset－speed 6	F0日G～F00日	18.0	\bigcirc	
$F 7 E Z$	Preset－speed 7	F0日G～F00日	21.0	\bigcirc	
F7E3	Preset－speed 8	F009～600日	24.0	\bigcirc	
F7ご	Preset－speed 9	F009～6008	27.0	\bigcirc	
F7こ5	Preset－speed 10	F009～F00日	30.0	\bigcirc	
FTEG	Preset－speed 11	F009～F008	33.0	\bigcirc	
$F 7{ }^{\text {F }} 7$	Preset－speed 12	F009～F00日	36.0	\bigcirc	
F7E日	Preset－speed 13	F009～F00日	39.0	\bigcirc	
F729	Preset－speed 14	F009～6008	45.0	\bigcirc	
F730	Preset－speed 15	F009～6008	50.0	\bigcirc	
F73i	factory reserved				
F7E3	Multi－speed 0 run time	0～65000．0s（min）	0.0		
F733	Multi－speed 1 run time	0～65000．0s（min）	0.0		
F734	Multi－speed 2 run time	0～65000．0s（min）	0.0		

NO．	Parameter Name	Setting Range	default	WRT	User setting
F735	Multi－speed 3 run time	0～65000．0s（min）	0.0		
$F 736$	Multi－speed 4 run time	0～65000．0s（min）	0.0		
F737	Multi－speed 5 run time	0～65000．0s（min）	0.0		
F73日	Multi－speed 6 run time	0～65000．0s（min）	0.0		
F739	Multi－speed 7 run time	0～65000．0s（min）	0.0		
F740	Multi－speed 8 run time	0～65000．0s（min）	0.0		
F74	Multi－speed 9 run time	0～65000．0s（min）	0.0		
F74E	Multi－speed 10 run time	0～65000．0s（min）	0.0		
F743	Multi－speed 11 run time	0～65000．0s（min）	0.0		
F744	Multi－speed 12 run time	0～65000．0s（min）	0.0		
$F 745$	Multi－speed 13 run time	0～65000．0s（min）	0.0		
F745	Multi－speed 14 run time	0～65000．0s（min）	0.0		
$F 747$	Multi－speed 15 run time	0～65000．0s（min）	0.0		
F7ヨコ	Multi－speed 0 run time	0～65000．0s（min）	0.0		
F7ココ	Multi－speed 1 run time	0～65000．0s（min）	0.0		
F734	Multi－speed 2 run time	0～65000．0s（min）	0.0		
F735	Multi－speed 3 run time	0～65000．0s（min）	0.0		
F736	Multi－speed 4 run time	0～65000．0s（min）	0.0		
$F 737$	Multi－speed 5 run time	0～65000．0s（min）	0.0		
F73日	Multi－speed 6 run time	0～65000．0s（min）	0.0		
F739	Multi－speed 7 run time	0～65000．0s（min）	0.0		
F740	Multi－speed 8 run time	0～65000．0s（min）	0.0		
F74	Multi－speed 9 run time	0～65000．0s（min）	0.0		
F74E	Multi－speed 10 run time	0～65000．0s（min）	0.0		
F743	Multi－speed 11 run time	0～65000．0s（min）	0.0		
F744	Multi－speed 12 run time	0～65000．0s（min）	0.0		
$F 745$	Multi－speed 13 run time	0～65000．0s（min）	0.0		
F745	Multi－speed 14 run time	0～65000．0s（min）	0.0		
$F 747$	Multi－speed 15 run time	0～65000．0s（min）	0.0		
F748	PLC speed direction option	0～65535	0		
F749	Simple PLC running mode	0 ：run one time and then stop 1：run one time and keep running at the final value 2：recycle running	0		
$F 750$	Simple PLC restart mode selection	0 ：start running from the first phase 1：keep running from the interrupt frequency	0		
F75：	Simple PLC Power drop memory selection	0 ：no memory for power drop 1：memory for power drop	0		

NO.	Parameter Name	Setting Range	default	WRT	User setting
F753	Simple PLC running time unit selection	$\begin{aligned} & \text { 0: second (s) } \\ & \text { 1: min } \end{aligned}$	0		
F753	Nonstandard function selection	0~65535	0	\bigcirc	
F754	Al1 curve selection	0: Curve (Point 2) 1: Curve (Point 4)	0	\bigcirc	
$F 755$	Al1 curve 2 set point 1 input	0.0~100.0\%	0.0\%	\bigcirc	
$F 756$	Al1 curve 2 sets point 1 output	-100\% ~ 100\%	0.0\%	\bigcirc	
F75 7	Al1 curve 2 set point 2 input	0.0~100.0\%	30.0\%	\bigcirc	
F758	Al1 curve 2 sets point 2 output	-100\% ~ 100\%	30.0\%	\bigcirc	
$F 759$	Al1 curve 2 set point 3 input	0.0 ~ 100.0\%	60.0\%	\bigcirc	
$F 760$	Al1 curve 2 sets point 3 output	-100\% ~ 100\%	60.0\%	\bigcirc	
F76:	Al1 curve 2 set point 4 input	0.0 ~ 100.0\%	100.0\%	\bigcirc	
F762	Al1 curve 2 sets point 4 output	-100\% ~ 100\%	100.0\%	\bigcirc	
F763	LI1 effective delay	$6500.0 \sim 0.0 \mathrm{~s}$	0.0	\bigcirc	
F764	LI1 invalid delay	$6500.0 \sim 0.0 \mathrm{~s}$	0.0	\bigcirc	
F765	LI2 effective delay	$6500.0 \sim 0.0 \mathrm{~s}$	0.0	\bigcirc	
F765	LI2 invalid delay	$6500.0 \sim 0.0 \mathrm{~s}$	0.0	\bigcirc	
F767	Al1 filtering coefficient	0.00-10.00	0.30	\bigcirc	
F75日	Al2 filtering coefficient	0.00-10.00	0.30	\bigcirc	
F769	AO1 filtering coefficient	0.00-10.00	0.00	\bigcirc	
$F 770$	AO2 filtering coefficient	0.00-10.00	0.00	\bigcirc	
FT7E	Password Setting	0~9999	0	\bigcirc	
FTiz	Password duration	0~9999 min	5	\bigcirc	
F613	Module writes data 1	0: Off 1: Communication command control (FA05) 2: Reservations 3: Communication frequency setting (FA08) 4~6: reservations	1	\bigcirc	
F8:4	Module writes data 2		3	\bigcirc	

NO．	Parameter Name	Setting Range	default	WRT	User setting
FG： 5	Module dates read 1	0：Off 1：Status Information（FD03） 2：Output frequency（FD12） 3：Output current（FE08） 4：Output voltage（FE10） 5：Fault information（FC39） 6：PID feedback value（FA36） 7：Input terminal information（FD01） 8：Output terminal information（FD02） 9：Al1 input（FE30） 10：Al2 input（FE31） 11：Motor speed（FE50） 12：Absolute value of output current （ 10 Gこ），unit 0．01a 13：Absolute value of output voltage （ 5 昌品），unit V 14：Absolute value of input voltage of DC bus（ $E \square 9$ ），unit V 15：PID given value（FA35） 16：Output torque（FE20）， 0.01% of rated torque per unit motor 17：Input power（FE28）， 0.01 kW 18：Output power（FE29）， 0.01 kW 19：Input power accumulation／input electric energy（FE44），the unit is determined according to the parameter FE：7 20：Output power accumulation／output electric energy（FE45），the unit is determined according to the parameter FE：7 21：Cumulative running time（FE17）， unit h （hours）	1	\bigcirc	
FGis	Module dates read 2		2	\bigcirc	
FG：7	Module dates read 3		12	\bigcirc	
FGig	Module dates read 4		18	O	
FGig	Module dates read 5		8	\bigcirc	

［－f8－］					
NO．	Parameter Name	Setting Range	default	WRT	User setting
F808	Modbus baud rate	0： 9600 bps 1： 19200 bps 2： 4800 bps 3： 2400 bps 4： 1200 bps	1	－	
F80	Modbus parity	0：NONE 1：EVEN 2：ODD	1	－	
F803	Modbus address	0－247	1	－	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F日曻	Modbus timeout	0：timeout check disabled． $1-100 \mathrm{~s}$	0	－	
F8日 4	Modbus transger waiting time	$0 \sim 2.00 \mathrm{~s}$	0.00	－	
F日星	Modbus behaviour on communication fault	0：frequency inverter stop， communication command，frequency mode open（by F． 1：None（continued operation） 2：Deceleration stop 3：Coast stop 4：Communication error（E－Э Ξ trip） or Network error（E－ヨ5 trip）	4	\bigcirc	
F日星	Number of motor poles for communication	1～8	2	\bigcirc	
F日曰i	factory reserved				
ト日コご	factory reserved				
トロココ	factory reserved				
F日に4	factory reserved				
F日ご	factory reserved				
Fロゴ号	factory reserved				
F日ご	factory reserved				
F日G日	factory reserved				
Fロご	factory reserved				
F日 56	PID setting of keypad	0～100\％	0.0	－	

［－f9－］					
NO．	Parameter Name	Setting Range	Default	WRT	User setting
F988	PID control setting	0：Disabled， 1：Enabled（Feedback：AI1） 2：Enabled（Feedback：AI2）	0	\bigcirc	
F98i	Proportional gain（P control）	0．01～100．0	varies by model	\bigcirc	
F989	Integral gain	0．01～100．0	varies by model	－	
F983	Differential gain	0．00～2．55	0.00	\bigcirc	
F964	PID control waiting time	0～2400 s	0	\bigcirc	
F985	PID regulator diviation input signal negation／Direction	0：disable／Direct action 1：enable／Reaction	0	\bigcirc	
F985	Sleep mode awakening hysteresis bandwidth	$0.0 \mathrm{~Hz} \sim$ F 87	0.2	\bigcirc	
F987	Sleeping mode awakening threshold based on PI deviation	$0.0 \mathrm{~Hz} \sim$ F 97	0.0	\bigcirc	

NO．	Parameter Name	Setting Range	default	WRT	User setting
F98日	Sleeping mode awakening threshold based on Pl feedback	$0.0 \mathrm{~Hz} \mathrm{\sim F}$～ 9	0.0	－	
F989	sleeping mode action	0：Motor slowdown to a stop． 1：Motor keep running at lower limit frequency．	0	－	
F9 18	wake up delay	0～600．0s	0.0	\bullet	
Fgit	Auto wake up level	0～200．0\％	0.0	\bigcirc	
F918	Auto sleep level	0～200．0\％	100	\bigcirc	
F913	Upper limit of PID setting	0～100\％	100	\bullet	
F9 4	Lower limit of PID setting	0～下G 3	0	\bullet	
F915	Delay control of sleep mode	Disable： 0.0 Enable：0．1－600．0 s	0.1	\bigcirc	
F915	PID control deviation limit	0～100\％	0.0	\bigcirc	
F917	Sensor range	0．00～99．99	1.00		
F918	PID adjustment	0．00～FG 7	0.00		
F919	Sleeping frequency	$0.0 \mathrm{~Hz} \mathrm{\sim F}$ F昌日	0.0		
F9ご召	Sleeping threshold tolerance	0．0～25．0\％	0.0		

Note 1：in the volume of＂WRT＂，＂○＂：means writable at stop or running status．；＂॰＂：means unwritable at stop or running status；

Note 2：we can obtained modbus parameter address by replacing＇F．＇of＇R＇．E．g．F 日＇s address is 0x0908。

NO．	Parameter Name	Description
4008	CPU1 Version	E．g：$\quad \mathrm{LO}$
400	Operation frequency	Value is displayed in $\mathrm{Hz} /$ free unit．See 558 St ．
4002	Direction of rotation	$\square \square_{\text {Forward run，}}^{\square}$ Reverse run．
4083	frequency command value	Value is displayed in $\mathrm{Hz} /$ free unit．See F504．
4084	load current	The frequency inverter output current（\％／A）is displayed．
4085	input voltage （AC RMS）	The frequency inverter input voltage（\％／V）is displayed．
4005	output voltage （AC RMS）	The frequency inverter output voltage command（\％／V）is displayed．
4087	Input terminal status indicated	1．OFF i．ON 11 kW or below： \square 15kW or above： \square ：off i：on
1008	Output terminal status indicated	

NO．	Parameter Name	Description
1009	cumulative operation time	（ $0.01=1$ hour， $1.00=100$ hours）
406	Output speed	Displays the motor speed（ min－1）by calculating with output frequency and pole numbers．
10：	Rated current	The rated current of the frequency inverter（ A ）is displayed．
4012	Torque current	The torque current（\％／A）is displayed．
16：3	Load current	The frequency inverter output current（load current）（\％／A）is displayed．
2014	Torque	The torque（\％）is displayed．
14： 15	Input power	The frequency inverter input power（kW）is displayed．
4015	Output power	The frequency inverter output power（kW）is displayed．
1097	PID feedback	The PID feedback value is displayed．（Hz／free unit）
126	Frequency command value （PID－computed）	The PID－computed frequency command value is displayed．（Hz／free unit）
	Integral input power	The integrated amount of power（kWh）supplied to the frequency inverter is displayed．
4020	Integral output power	The integrated amount of power（kWh）supplied from the frequency inverter is displayed．
い日ご	Communication counter	Displays the counter numbers of communication through the network．
い日ご	Normal state communication counter	Displays the counter numbers of communication only at normal state in the all communication through network．
い0こう	Cpu2 version	$\square 10$
い0ご	Parts replacement alarm information	$\underset{\substack{\text { Cumulated } \\ \text { Manning time } \\ \text { capacitor }}}{\text { PCB Fan }} \quad$ ：OFF \quad ：ON ON：Needs to be replaced
4025	Cpu1 revision	
4025	PID setting	Displayed in \％term．
แ6こ7	PID feedback	Displayed in \％term．
迷 1 －	Past trip 1	Enter into the display of detailed information on past trip 1
いご－	Past trip 2	Enter into the display of detailed information on past trip 2
いヨ－－	Past trip 3	Enter into the display of detailed information on past trip 3
44－－	Past trip 4	Enter into the display of detailed information on past trip 4

10. APPENDIX C: BRAKE UNIT/RESISTANCE SELECTION

Model	Brake unit		Brake resistance		
	description	QTY	VALUE	POWER	QTY
V6-0R75G/1R5P-T4	BUILD-IN	1	750Ω	110W	1
V6-1R5G/2R2P-T4		1	400Ω	260W	1
V6-2R2G/3RP-T4		1	250Ω	320W	1
V6-4RG/5R5P-T4		1	150Ω	400W	1
V6-5R5G/7R5P-T4		1	100Ω	520W	1
V6-7R5G/11RP-T4		1	75Ω	1040W	1
V6-11RG/15RP-T4		1	50Ω	1040W	1
V6-15RG/18R5P-T4		1	40Ω	1500W	1
V6-18R5G/22RP-T4		1	40Ω	1500W	1
V6-22RG/30RP-T4		1	20Ω	8kW	1
V6-30RG/37RP-T4		1	20Ω	8kW	1
V6-37RG/45RP-T4		1	13.6 ת	10kW	1
V6-45RG/55RP-T4	X -CBU4045	1	13.6Ω	10kW	1
V6-55RG/75RP-T4	X -CBU4055	1	12Ω	12kW	1
V6-75RG/90RP-T4	X-CBU4075	1	10Ω	20kW	1
V6-90RG/110RP-T4	X-CBU4110	1	6.8Ω	30kW	1
V6-110RG/132RP-T4		1	6.8Ω	30kW	1
V6-132RG/160RP-T4	X-CBU4160	1	5Ω	40kW	1
V6-160RG/185RP-T4		1	5Ω	40kW	1
V6-185RG/200RP-T4	X-CBU4220	1	3.2Ω	60kW	1
V6-200RG/220RP-T4		1	3.2Ω	60kW	1
V6-220RG/250RP-T4		1	3.2Ω	60kW	1
V6-250RG/280RP-T4	X-CBU4300	1	2.5Ω	80kW	1
V6-280RG/315RP-T4		1	2.5Ω	80kW	1
V6-315RG/350RP-T4		1	2.5Ω	80kW	1
V6-350RG-T4	X-CBU4220	2	3.2Ω	60kW	2
V6-400RG-T4		2	3.2Ω	60kW	2
V6-500RG-T4	X-CBU4300	2	2.5Ω	80kW	2
V6-560RG-T4	X-CBU4220	3	3.2Ω	60KW	3
V6-630RG-T4	X-CBU4220	3	3.2Ω	60KW	3
V6-710RG-T4	X-CBU4220	3	3.2Ω	60KW	3
V6-800RG-T4	X-CBU4220	3	3.2Ω	60KW	3

